期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
结合朴素贝叶斯和欧氏距离的二类非均衡数据集成方法 被引量:5
1
作者 王磊 赵磊 郑宝玉 《信号处理》 CSCD 北大核心 2017年第4期528-532,共5页
随着数据挖掘技术的发展,传统集成方法中的集成规则,例如Max rule,Min rule,Product rule,以及Sum rule,已经不能满足现实中对于二类非均衡数据分类正确率的需要。因此本文提出了基于朴素贝叶斯和欧氏距离的二类非均衡数据集成方法。该... 随着数据挖掘技术的发展,传统集成方法中的集成规则,例如Max rule,Min rule,Product rule,以及Sum rule,已经不能满足现实中对于二类非均衡数据分类正确率的需要。因此本文提出了基于朴素贝叶斯和欧氏距离的二类非均衡数据集成方法。该集成方法是以朴素贝叶斯为基分类器,其集成规则通过引入测试数据与训练数据之间的欧式距离以及训练数据中多数类与少数类之间的关系,在空间距离上加强了最终的分类结果与原始训练数据之间的关联性。实验结果表明,该集成方法在处理二类非均衡数据时,Area Under roc Curve(AUC)值与现存的集成方法相比显著提高,从而具有更好的分类性能。因此,本文方法在处理二类非均衡数据时具有明显优势。 展开更多
关键词 二类非均衡数据 集成方法 欧氏距离 朴素贝叶斯
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部