Titania coating of multi wall carbon nano tube(MWCNT) was carried out by sol-gel method in order to improve its photo catalytic properties.The effect of MWCNT/TiO_2 mass to volume ratio on adsorption ability,reaction ...Titania coating of multi wall carbon nano tube(MWCNT) was carried out by sol-gel method in order to improve its photo catalytic properties.The effect of MWCNT/TiO_2 mass to volume ratio on adsorption ability,reaction rate and photo-catalytic removal efficiency of dibenzothiophene(DBT) from n-hexane solution was investigated using a 9 W UV lamp.The results show that the addition of nanotubes improves the photo-catalytic properties of TiO_2 by two factors;however,the DBT removal rate versus MWCNT content is found to follow a bimodal pattern.Two factors are observed to affect the removal rate of DBT and produce two optimum values for MWCNT content.First,large quantities of MWCNTs prevent light absorption by the solution and decrease removal efficiency.By contrast,a low dosage of MWCNT causes recombination of the electron holes,which also decreases the DBT removal rate.The optimum MWCNT contents in the composite are found to be 0.25 g and 0.75 g MWCNT per 80 m L of sol.展开更多
Zirconia-mullite composite ceramics were fabricated by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk. The effects of TiO2 addition on the fabrication of zirconia-mullite composites were investigated....Zirconia-mullite composite ceramics were fabricated by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk. The effects of TiO2 addition on the fabrication of zirconia-mullite composites were investigated. The ultra-fine zirconia-mullite composite ceramics were prepared from the amorphous bulk treated at 980 ℃ for nucleation and 1 140℃ for crystallization. The phase transformation of the ceramics was examined using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The microstructural features of the samples were evaluated with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and transmission electron microscopy (TEM). The mechanical properties were also determined using Vickers indentation. The results show that the TiO2 additives with mass fraction of 1%-7% reduce the formation temperature of t-ZrO2 and mullite. When the mass fraction of TiO2 additives is less than 5%, the phases do not change, and most of TiO2 dissolves in ZrO2. When the mass fraction of TiO2 additives is over 5%, the excessive TiO2 forms a new phase, ZrTiO4. Meanwhile, the results also show that TiO2 additives have a great impact on the microstructure and mechanical properties of zirconia-mullite composites. As the TiO2 content increases from 1% to 7% (mass fraction), the grain size and the Vickers hardness of zirconia-mullite composites increase. The composite with 3% (mass fraction) TiO2 additives attains relatively higher fracture toughness.展开更多
文摘Titania coating of multi wall carbon nano tube(MWCNT) was carried out by sol-gel method in order to improve its photo catalytic properties.The effect of MWCNT/TiO_2 mass to volume ratio on adsorption ability,reaction rate and photo-catalytic removal efficiency of dibenzothiophene(DBT) from n-hexane solution was investigated using a 9 W UV lamp.The results show that the addition of nanotubes improves the photo-catalytic properties of TiO_2 by two factors;however,the DBT removal rate versus MWCNT content is found to follow a bimodal pattern.Two factors are observed to affect the removal rate of DBT and produce two optimum values for MWCNT content.First,large quantities of MWCNTs prevent light absorption by the solution and decrease removal efficiency.By contrast,a low dosage of MWCNT causes recombination of the electron holes,which also decreases the DBT removal rate.The optimum MWCNT contents in the composite are found to be 0.25 g and 0.75 g MWCNT per 80 m L of sol.
基金Project(50721003) supported by the National High Technology Research and Development Program of China for Creative Research Group
文摘Zirconia-mullite composite ceramics were fabricated by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk. The effects of TiO2 addition on the fabrication of zirconia-mullite composites were investigated. The ultra-fine zirconia-mullite composite ceramics were prepared from the amorphous bulk treated at 980 ℃ for nucleation and 1 140℃ for crystallization. The phase transformation of the ceramics was examined using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The microstructural features of the samples were evaluated with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and transmission electron microscopy (TEM). The mechanical properties were also determined using Vickers indentation. The results show that the TiO2 additives with mass fraction of 1%-7% reduce the formation temperature of t-ZrO2 and mullite. When the mass fraction of TiO2 additives is less than 5%, the phases do not change, and most of TiO2 dissolves in ZrO2. When the mass fraction of TiO2 additives is over 5%, the excessive TiO2 forms a new phase, ZrTiO4. Meanwhile, the results also show that TiO2 additives have a great impact on the microstructure and mechanical properties of zirconia-mullite composites. As the TiO2 content increases from 1% to 7% (mass fraction), the grain size and the Vickers hardness of zirconia-mullite composites increase. The composite with 3% (mass fraction) TiO2 additives attains relatively higher fracture toughness.