期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
三相界面调控在电催化二氧化碳还原反应中的研究进展
1
作者 韩子姗 邹亢 杨雪 《应用化学》 北大核心 2025年第7期901-913,共13页
电催化二氧化碳还原反应(CO_(2)RR)可高效合成高值化学品与燃料,为缓解大气CO_(2)浓度上升及可再生能源存储提供重要技术途径。本综述系统梳理了电催化CO_(2)RR中构建稳定三相界面的研究进展,重点关注增强CO_(2)传质的调控策略以及影响... 电催化二氧化碳还原反应(CO_(2)RR)可高效合成高值化学品与燃料,为缓解大气CO_(2)浓度上升及可再生能源存储提供重要技术途径。本综述系统梳理了电催化CO_(2)RR中构建稳定三相界面的研究进展,重点关注增强CO_(2)传质的调控策略以及影响膜电极/气体扩散电极体系稳定性的解决方案,并探讨了这些策略的适用范围以及对电催化CO_(2)RR性能的影响。最后,基于三相界面,进一步指出了CO_(2)RR在面向工业化应用过程中所面临的科学与技术挑战。 展开更多
关键词 二氧化碳电还原反应 三相界面调控 二氧化碳传质 体系稳定性
在线阅读 下载PDF
电催化二氧化碳还原催化剂、电解液、反应器和隔膜研究进展 被引量:4
2
作者 彭芦苇 张杨 +2 位作者 何瑞楠 徐能能 乔锦丽 《物理化学学报》 SCIE CAS CSCD 北大核心 2023年第12期39-62,共24页
人类社会的正常运转非常依赖化石能源,然而化石能源的消耗已导致能源危机和环境污染,同时空气中CO_(2)的含量从工业革命以来一直攀升。将CO_(2)通过催化反应转化为高附加值的燃料和化学品,不仅可以缓解环境问题,还开辟了一种燃料合成新... 人类社会的正常运转非常依赖化石能源,然而化石能源的消耗已导致能源危机和环境污染,同时空气中CO_(2)的含量从工业革命以来一直攀升。将CO_(2)通过催化反应转化为高附加值的燃料和化学品,不仅可以缓解环境问题,还开辟了一种燃料合成新路径,其中电催化CO_(2)还原技术由于条件温和、反应可控、对环境友好和产物众多受到广泛关注。电催化CO_(2)技术有四个关键步骤:(1)电荷传输(电子从导电基底传输到电催化剂);(2)表面转化(CO_(2)吸附在催化剂表面并被活化);(3)电荷传输(电子从催化剂表面传输到CO_(2)中间体);(4)传质效应(CO_(2)从电解质扩散到催化剂表面,产物以反向路径扩散),前两个步骤依赖于具有丰富有效活性位点的催化剂,后两个步骤依赖于电解质的性质、隔膜的类型和电解池的配置。本文从工业化和商业化电催化CO_(2)技术出发,系统地归纳催化剂的发展、电解液的影响、反应器的进展和隔膜的类型,最后对电催化CO_(2)还原的产业化进行展望。 展开更多
关键词 催化二氧化碳还原反应 催化剂 解液 隔膜 反应 工业化
在线阅读 下载PDF
Ni单原子催化剂表面CO2电还原动力学的电化学谱学解析 被引量:1
3
作者 毛庆 赵健 +5 位作者 刘松 郭唱 李冰玉 徐可一 曹自强 黄延强 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2020年第5期1058-1067,共10页
针对Ni单原子催化剂表面的CO 2电还原反应(CO 2RR),提出了以Ni为活性位点的“单中心”机理以及同时借助Ni位点还原和碳氮锚定位水解的“双功能”机理.依据稳态极化的实验结果,开展了CO 2RR的动力学解析与模型参数的敏感性分析;借助暂态... 针对Ni单原子催化剂表面的CO 2电还原反应(CO 2RR),提出了以Ni为活性位点的“单中心”机理以及同时借助Ni位点还原和碳氮锚定位水解的“双功能”机理.依据稳态极化的实验结果,开展了CO 2RR的动力学解析与模型参数的敏感性分析;借助暂态模型方程,分别获取可表达CO 2RR线性与非线性频响特征的电化学阻抗谱(EIS)与总谐波失真(THD)谱.研究结果表明,CO 2的溶解分压对CO 2RR活性影响最显著.若CO 2RR遵循“单中心”机理,Ni位点COOH ads的形成为速率控制步骤;但若为“双功能”机理,碳氮锚定位的水解与Ni位点的CO 2,ads还原同为速率控制步骤.EIS理论上可用于区分CO 2RR的“单中心”机理与“双功能”机理;与之相比,THD谱在CO 2RR的机理识别中并无优势. 展开更多
关键词 二氧化碳电还原反应机理 化学阻抗谱 非线性频响分析 总谐波失真谱
在线阅读 下载PDF
Ambient CO_(2) Capture and Valorization Enabled by Tandem Electrolysis Using Solid-State Electrolyte Reactor
4
作者 Yan-Bo Hua Bao-Xin Ni Kun Jiang 《电化学(中英文)》 2025年第6期38-50,共13页
Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-inten... Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community. 展开更多
关键词 Electrocatalysis Electrolysis CO_(2)capture CO_(2)reduction Solid-state electrolyte reactor
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部