Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-inten...Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community.展开更多
On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil ...On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil particles.However,soil particles on the Earth with the similar composition lack such structures and properties.This discrepancy raises a key question whether there is a direct relationship between solar wind irradiation and the alterations in the structure and chemical performance of extraterrestrial materials.To address this question,this work investigates the effects of proton irradiation,simulating solar wind radiation,on the structure and photothermal catalytic properties of the classic catalyst In_(2)O_(3).It reveals that proton irradiation induces structural features in In_(2)O_(3) analogous to those characteristics of solar wind weathering observed in extraterrestrial materials.Furthermore,after proton beam irradiation with an energy of 30 keV and a dose of 3×10^(17) protons·cm^(-2),the methanol production yield of the In_(2)O_(3) catalyst increased to 2.6 times of its preirradiation level,and the methanol selectivity improved to 2.1 times of the original value.This work provides both theoretical and experimental support for the development of high-efficiency,radiation-resistant photothermal catalysts.展开更多
The conversion of CO_(2)to dimethyl carbonate(DMC)offers a promising route for CO_(2)utilization.In this study,four CeO2 catalysts with distinct nanostructures were synthesized via a template-free hydrothermal method ...The conversion of CO_(2)to dimethyl carbonate(DMC)offers a promising route for CO_(2)utilization.In this study,four CeO2 catalysts with distinct nanostructures were synthesized via a template-free hydrothermal method by systematically varying the types and concentrations of precipitants as well as the hydrothermal reaction conditions,and they were employed for DMC synthesis from CO_(2)and methanol.The atomic arrangements of CeO_(2)varied significantly with its morphology,leading to differences in lattice distortion,which directly influenced the concentration of oxygen vacancies.Notably,the CeO_(2)nanospheres,which exhibited the highest lattice distortion and oxygen vacancy concentration,achieved a DMC yield(11.12 mmol/g)48 times greater than that of the nanocubes(0.23 mmol/g).The results indicated that oxygen vacancies played a pivotal role in the catalytic process by facilitating the adsorption and activation of CO_(2)to form bidentate carbonates,as well as activating methanol to generate methoxy species.These processes collectively promoted the formation of the key intermediate(*CH3OCOO).This study proposes a strategy to enhance the oxygen vacancy concentration by increasing lattice distortion,providing valuable insights for designing high-performance CeO_(2)catalysts for DMC synthesis.展开更多
Nitrogen doping has significant effects on the photocatalytic performance of ceria(CeO_(2)),and the possible synergistic effect with the inevitably introduced abundant oxygen vacancies(OVs)is of great significance for...Nitrogen doping has significant effects on the photocatalytic performance of ceria(CeO_(2)),and the possible synergistic effect with the inevitably introduced abundant oxygen vacancies(OVs)is of great significance for further investigation,and the specifically exposed crystal faces of CeO_(2)may have an impact on the performance of nitrogen doped CeO_(2).Herein,nitrogen-doped CeO_(2)with different morphologies and exposed crystal faces was prepared,and its performances in the photocatalytic degradation of tetracycline(TC)or hydrogen production via water splitting were evaluated.Density functional theory(DFT)was used to simulate the band structures,density of states,and oxygen defect properties of different CeO_(2)structures.It was found that nitrogen doping and OVs synergistically promoted the catalytic activity of nitrogen-doped CeO_(2).In addition,the exposed crystal faces of CeO_(2)have significant effects on the introduction of nitrogen and the ease of OV generation,as well as the synergistic effect of nitrogen doping with OVs.Among them,the rod-like nitrogen-doped CeO_(2)with exposed(110)face(R-CeO_(2)-NH_(3))showed a photocatalytic degradation ratio of 73.59%for TC and hydrogen production of 156.89μmol/g,outperforming other prepared photocatalysts.展开更多
In response to the fact that the presence of manganese dithionate(MnS_(2)O_(6))leads to a series of adverse impacts,especially lower purity of manganese sulfate(MnSO_(4))and disruption of its recovery,advanced oxidati...In response to the fact that the presence of manganese dithionate(MnS_(2)O_(6))leads to a series of adverse impacts,especially lower purity of manganese sulfate(MnSO_(4))and disruption of its recovery,advanced oxidation methods such as ozonation system are used to manage MnS_(2)O_(6)in the leaching solution,replacing conventional methods.To ascertain the conversion rate and kinetics of MnS_(2)O_(6)during the ozonation process,we explored the factors influencing its removal rate,including ozone dosage,manganese dithionate concentration,sulfuric acid concentration,and reaction temperature.Batch experiments were conducted to determine the reaction rate constant of ozone(k)and activation energy(Ea)obtained from intermittent experimental data fitting,revealing a least-squares exponential conversion relationship between k and the MnS_(2)O_(6)removal amount,wherein an increase in the aforementioned factors led to an enhanced MnS_(2)O_(6)conversion rate,exceeding 99.3%.The formation mechanism of the ozone products proposed during the experiment was summarized and proposed as follows:1)Mn^(2+)was directly oxidized to MnO_(2),and 2)SO_(4)2−was obtained by the catalytic oxidation of S_(2)O_(6)^(2−)with HO•from O3 decomposition.According to the kinetics analysis,the pre-exponential factor and total activation energy of the ozonation kinetics equation were 1.0×10^(23) s^(−1) and 177.28 kJ/mol,respectively.Overall,the present study demonstrates that O_(3) as an oxidizing agent can effectively facilitate MnS_(2)O_(6)disproportionation while preventing the release of the secondary pollutant,SO_(2)gas.展开更多
Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temper...Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temperature carbon dioxide electrolysis,utilizing the full solar spectrum.The optimal oxygen production rates under different solid oxide electrolysis cell inlet temperatures T_(e),ultraviolet(UV)separation wavelengths λ_(2),infrared(IR)separation wavelengths,and photovoltaic cell materials were explored.The results indicate that the inlet temperature of the solid oxide electrolysis cell should be as high as possible so that more carbon dioxide can be converted into carbon monoxide and oxygen.Furthermore,when the ultraviolet separation wavelength is approximately 385 nm,the proportion of solar energy allocated to the photoreaction and electrolysis cell is optimal,and the oxygen production rate is highest at 2.754×10^(-4) mol/s.Moreover,the infrared separation wavelength should be increased as much as possible within the allowable range to increase the amount of solar radiation allocated to the electrolysis cell to improve the rate of oxygen generation.In addition,copper indium gallium selenide(CIGS)has a relatively large separation wavelength,which can result in a high oxygen production rate of 3.560×10^(-4) mol/s.The proposed integrated oxygen production method can provide a feasible solution for supplying oxygen to a lunar human base.展开更多
Electrochemically exfoliated graphene(EEG)is a kind of high-quality graphene with few oxygen-containing functional groups and defects on the surface,and thereby is more suitable as catalyst support than other carbon m...Electrochemically exfoliated graphene(EEG)is a kind of high-quality graphene with few oxygen-containing functional groups and defects on the surface,and thereby is more suitable as catalyst support than other carbon materials such as extensively used reduced graphene oxide(rGO).However,it is difficult to grow functional materials on EEG due to its inert surface.In this work,ultra-small Pt nanocrystals(~2.6 nm)are successfully formed on EEG and show better electrocatalytic activity towards methanol oxidation than Pt catalysts on r GO.The outstanding catalytic properties of Pt catalysts on EEG can be attributed to the fast electron transfer through EEG and high quality of Pt catalysts such as small grain size,high dispersibility and low oxidation ratio.In addition,SnO2 nanocrystals are controllably generated around Pt catalysts on EEG to raise the poison tolerance of Pt catalysts through using glycine as a linker.Owing to its outstanding properties such as high electrical conductivity and mechanical strength,EEG is expected to be widely used as a novel support for catalysts.展开更多
To develop an effective process for titanium powders production, a calciothermic reduction process of pigment titanium dioxide (w(TiO2)〉98%), based on the preform reduction process (PRP), was investigated by me...To develop an effective process for titanium powders production, a calciothermic reduction process of pigment titanium dioxide (w(TiO2)〉98%), based on the preform reduction process (PRP), was investigated by means of XRD, SEM and EDS. In this process, the mixture of TiO2 powder and CaC12 was pressed into pieces as feed preform and was reduced by calcium vapor. Titanium powders was recovered after leaching from the reduced preform with hydrochloric acid and deionized water. The results indicate when the mass ratio of CaC12 to TiO2 is about 1:4 and at a constant temperature of 1 273 K for 6 h in vacuum furnace, titanium powders with 99.55% purity by EDS analysis and irregular shape (8-15 μm in particle size) are obtained.展开更多
To protect carbon/carbon (C/C) composites from oxidation, a SiC coating modified with SiO2 was prepared by a complex technology. The inner SiC coating with thickness varying from 150 to 300 μm was initially coated by...To protect carbon/carbon (C/C) composites from oxidation, a SiC coating modified with SiO2 was prepared by a complex technology. The inner SiC coating with thickness varying from 150 to 300 μm was initially coated by chemical vapor reaction (CVR): a simple and cheap technique to prepare the SiC coating via siliconizing the substrate that was exposed to the mixed vapor (Si and SiO2) at high temperatures (1 923?2 273 K). Then the as-prepared coating was processed by a dipping and drying procedure with tetraethoxysilane as source materials to form SiO2 to fill the cracks and holes. Oxidation tests show that, after oxidation in air at 1 623 K for 10 h and thermal cycling between 1 623 K and room temperature 5 times, the mass loss of the CVR coated sample is up to 18.21%, while the sample coated with modified coating is only 5.96%, exhibiting an obvious improvement of oxidation and thermal shock resistance of the coating. The mass loss of the modified sample is mainly contributed to the reaction of C/C substrate with oxygen diffusing through the penetrating cracks formed in thermal shock tests.展开更多
To explicate the thermodynamics of the chromite ore lime-free roasting process, the thermodynamics of reactions involved in this process was calculated and the phrases of sinter with different roasting times were stud...To explicate the thermodynamics of the chromite ore lime-free roasting process, the thermodynamics of reactions involved in this process was calculated and the phrases of sinter with different roasting times were studied. The thermodynamics calculation shows that all the standard Gibbs free energy changes of the reactions to form Na2CrO4, Na2O-Fe2O3, Na2O·Al2O3 and Na2O3 SiO2 via chromite ore and Na2CO3 are negative, and the standard Gibbs free energy changes of the reactions between MgO, Fe2O3 and SiO2 released from chromite spinel to form MgO-Fe2O3 and MgO·SiO2 are also negative at the oxidative roasting temperatures (1 173 1 473 K). The phrase analysis of the sinter in lime-free roasting process shows that Na2O·Fe2O3, Na2O·Al2O3 and Na2O·SiO2 can be formed in the first 20 min, but they decrease in contents and finally disappear with the increase of roasting time. The final phase compositions of the sinter are Na2CrO4, MgO·Fe2O3, MgO·SiO2 and MgO. The results indicate that Na2CrO4 can be formed easily via the reaction ofNa2CO3 with chromite ore. Na2O·Fe2O3, Na2O-Al2O3 and Na2O·SiO2 can be formed as intermediate compounds in the roasting process and they can further react with chromite ore to form Na2CrO4. MgO released from chromite ore may react with iron oxides and silicon oxide to form stable compounds of MgO·Fe2O3 and MgO·SiO2, respectively.展开更多
Unveiling the active site of an electrocatalyst is fundamental for the development of efficient electrode material.For the two-electron water oxidation to produce H_(2)O_(2),competitive reactions,including four-and on...Unveiling the active site of an electrocatalyst is fundamental for the development of efficient electrode material.For the two-electron water oxidation to produce H_(2)O_(2),competitive reactions,including four-and one-electron water oxidation and surface reconstruction derived from the high-oxidative environment co-existed,leading to great challenges to identify the real active sites on the electrode.In this work,Ti/TiO_(2)-based electrodes calcined under air,nitrogen,or urea atmospheres were selected as electrocatalysts for two-electron water oxidation.Electrochemical analyses were applied to evaluate the catalytic activity and selectivity.The morphological and current change on the electrode surface were determined by scanning electrochemical microscopy,while the chemical and valence evolutions with depth distributions were tested by XPS combined with cluster argon ion sputtering.The results demonstrated that Ti/TiO_(2) nanotube arrays served as the support,while the functional groups of carbonyl groups and pyrrolic nitrogen derived from the co-pyrolysis with urea were the active sites for the H_(2)O_(2) production.This finding provided a new horizon to design efficient catalysts for H_(2)O_(2) production.展开更多
基金This work was supported by the National Key R&D Program of China(2022YFB4102000 and 2022YFA1505100)the NSFC(22472038)the Shanghai Science and Technology Innovation Action Plan(22dz1205500).
文摘Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community.
基金National Key Research and Development Program of China(2020YFA0710302)The Major Research Plan of the National Natural Science Foundation of China(91963206)+2 种基金The National Natural Science Foundation of China(52072169,51972164,51972167,22279053)The Fundamental Research Funds for the Central Universities(14380193)The Program for Guangdong Introducing Innovative and Entrepreneurial Teams(2019ZT08L101).
文摘On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil particles.However,soil particles on the Earth with the similar composition lack such structures and properties.This discrepancy raises a key question whether there is a direct relationship between solar wind irradiation and the alterations in the structure and chemical performance of extraterrestrial materials.To address this question,this work investigates the effects of proton irradiation,simulating solar wind radiation,on the structure and photothermal catalytic properties of the classic catalyst In_(2)O_(3).It reveals that proton irradiation induces structural features in In_(2)O_(3) analogous to those characteristics of solar wind weathering observed in extraterrestrial materials.Furthermore,after proton beam irradiation with an energy of 30 keV and a dose of 3×10^(17) protons·cm^(-2),the methanol production yield of the In_(2)O_(3) catalyst increased to 2.6 times of its preirradiation level,and the methanol selectivity improved to 2.1 times of the original value.This work provides both theoretical and experimental support for the development of high-efficiency,radiation-resistant photothermal catalysts.
基金National Natural Science Foundation of China(22008166)Fundamental Research Program of Shanxi Province(202403021211029,201901D211047).
文摘The conversion of CO_(2)to dimethyl carbonate(DMC)offers a promising route for CO_(2)utilization.In this study,four CeO2 catalysts with distinct nanostructures were synthesized via a template-free hydrothermal method by systematically varying the types and concentrations of precipitants as well as the hydrothermal reaction conditions,and they were employed for DMC synthesis from CO_(2)and methanol.The atomic arrangements of CeO_(2)varied significantly with its morphology,leading to differences in lattice distortion,which directly influenced the concentration of oxygen vacancies.Notably,the CeO_(2)nanospheres,which exhibited the highest lattice distortion and oxygen vacancy concentration,achieved a DMC yield(11.12 mmol/g)48 times greater than that of the nanocubes(0.23 mmol/g).The results indicated that oxygen vacancies played a pivotal role in the catalytic process by facilitating the adsorption and activation of CO_(2)to form bidentate carbonates,as well as activating methanol to generate methoxy species.These processes collectively promoted the formation of the key intermediate(*CH3OCOO).This study proposes a strategy to enhance the oxygen vacancy concentration by increasing lattice distortion,providing valuable insights for designing high-performance CeO_(2)catalysts for DMC synthesis.
基金Project(52164025)supported by the National Natural Science Foundation of ChinaProject([2020]1Y219)supported by the Basic Research Program from the Science&Technology Department of Guizhou Province,China+2 种基金Project([2019]30)supported by the Training Project from Guizhou University,ChinaProject([2023]04)supported by the Guizhou University Innovation Talent Team Project,ChinaProject([2022]041)supported by the Natural Science Research Project of Guizhou Provincial Department of Education,China。
文摘Nitrogen doping has significant effects on the photocatalytic performance of ceria(CeO_(2)),and the possible synergistic effect with the inevitably introduced abundant oxygen vacancies(OVs)is of great significance for further investigation,and the specifically exposed crystal faces of CeO_(2)may have an impact on the performance of nitrogen doped CeO_(2).Herein,nitrogen-doped CeO_(2)with different morphologies and exposed crystal faces was prepared,and its performances in the photocatalytic degradation of tetracycline(TC)or hydrogen production via water splitting were evaluated.Density functional theory(DFT)was used to simulate the band structures,density of states,and oxygen defect properties of different CeO_(2)structures.It was found that nitrogen doping and OVs synergistically promoted the catalytic activity of nitrogen-doped CeO_(2).In addition,the exposed crystal faces of CeO_(2)have significant effects on the introduction of nitrogen and the ease of OV generation,as well as the synergistic effect of nitrogen doping with OVs.Among them,the rod-like nitrogen-doped CeO_(2)with exposed(110)face(R-CeO_(2)-NH_(3))showed a photocatalytic degradation ratio of 73.59%for TC and hydrogen production of 156.89μmol/g,outperforming other prepared photocatalysts.
基金Project(2022M710619)supported by the Postdoctoral Science Foundation of ChinaProjects(2020YFH0213,2020YFG0039)supported by the Sichuan Science and Technology Program,China+1 种基金Projects(XJ2024001501,KCXTD2023-4)supported by the Basic Scientific Foundation and Innovation Team Funds of China West Normal UniversityProject(CSPC202403)supported by the Open Project Program of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province,China。
文摘In response to the fact that the presence of manganese dithionate(MnS_(2)O_(6))leads to a series of adverse impacts,especially lower purity of manganese sulfate(MnSO_(4))and disruption of its recovery,advanced oxidation methods such as ozonation system are used to manage MnS_(2)O_(6)in the leaching solution,replacing conventional methods.To ascertain the conversion rate and kinetics of MnS_(2)O_(6)during the ozonation process,we explored the factors influencing its removal rate,including ozone dosage,manganese dithionate concentration,sulfuric acid concentration,and reaction temperature.Batch experiments were conducted to determine the reaction rate constant of ozone(k)and activation energy(Ea)obtained from intermittent experimental data fitting,revealing a least-squares exponential conversion relationship between k and the MnS_(2)O_(6)removal amount,wherein an increase in the aforementioned factors led to an enhanced MnS_(2)O_(6)conversion rate,exceeding 99.3%.The formation mechanism of the ozone products proposed during the experiment was summarized and proposed as follows:1)Mn^(2+)was directly oxidized to MnO_(2),and 2)SO_(4)2−was obtained by the catalytic oxidation of S_(2)O_(6)^(2−)with HO•from O3 decomposition.According to the kinetics analysis,the pre-exponential factor and total activation energy of the ozonation kinetics equation were 1.0×10^(23) s^(−1) and 177.28 kJ/mol,respectively.Overall,the present study demonstrates that O_(3) as an oxidizing agent can effectively facilitate MnS_(2)O_(6)disproportionation while preventing the release of the secondary pollutant,SO_(2)gas.
基金supported by the National Natural Science Foundation of China(52106276 and 52130601).
文摘Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temperature carbon dioxide electrolysis,utilizing the full solar spectrum.The optimal oxygen production rates under different solid oxide electrolysis cell inlet temperatures T_(e),ultraviolet(UV)separation wavelengths λ_(2),infrared(IR)separation wavelengths,and photovoltaic cell materials were explored.The results indicate that the inlet temperature of the solid oxide electrolysis cell should be as high as possible so that more carbon dioxide can be converted into carbon monoxide and oxygen.Furthermore,when the ultraviolet separation wavelength is approximately 385 nm,the proportion of solar energy allocated to the photoreaction and electrolysis cell is optimal,and the oxygen production rate is highest at 2.754×10^(-4) mol/s.Moreover,the infrared separation wavelength should be increased as much as possible within the allowable range to increase the amount of solar radiation allocated to the electrolysis cell to improve the rate of oxygen generation.In addition,copper indium gallium selenide(CIGS)has a relatively large separation wavelength,which can result in a high oxygen production rate of 3.560×10^(-4) mol/s.The proposed integrated oxygen production method can provide a feasible solution for supplying oxygen to a lunar human base.
基金Projects(21573023,21975030)supported by the National Natural Science Foundation of China。
文摘Electrochemically exfoliated graphene(EEG)is a kind of high-quality graphene with few oxygen-containing functional groups and defects on the surface,and thereby is more suitable as catalyst support than other carbon materials such as extensively used reduced graphene oxide(rGO).However,it is difficult to grow functional materials on EEG due to its inert surface.In this work,ultra-small Pt nanocrystals(~2.6 nm)are successfully formed on EEG and show better electrocatalytic activity towards methanol oxidation than Pt catalysts on r GO.The outstanding catalytic properties of Pt catalysts on EEG can be attributed to the fast electron transfer through EEG and high quality of Pt catalysts such as small grain size,high dispersibility and low oxidation ratio.In addition,SnO2 nanocrystals are controllably generated around Pt catalysts on EEG to raise the poison tolerance of Pt catalysts through using glycine as a linker.Owing to its outstanding properties such as high electrical conductivity and mechanical strength,EEG is expected to be widely used as a novel support for catalysts.
基金Project(51004058) supported by the National Natural Science Foundation of ChinaProject(2011FB039) supported by the Natural Science Foundation of Yunnan Province,China
文摘To develop an effective process for titanium powders production, a calciothermic reduction process of pigment titanium dioxide (w(TiO2)〉98%), based on the preform reduction process (PRP), was investigated by means of XRD, SEM and EDS. In this process, the mixture of TiO2 powder and CaC12 was pressed into pieces as feed preform and was reduced by calcium vapor. Titanium powders was recovered after leaching from the reduced preform with hydrochloric acid and deionized water. The results indicate when the mass ratio of CaC12 to TiO2 is about 1:4 and at a constant temperature of 1 273 K for 6 h in vacuum furnace, titanium powders with 99.55% purity by EDS analysis and irregular shape (8-15 μm in particle size) are obtained.
基金Project(2006CB600901) supported by the National Basic Research Program of ChinaProject(50802115) supported by the National Natural Science Foundation of China
文摘To protect carbon/carbon (C/C) composites from oxidation, a SiC coating modified with SiO2 was prepared by a complex technology. The inner SiC coating with thickness varying from 150 to 300 μm was initially coated by chemical vapor reaction (CVR): a simple and cheap technique to prepare the SiC coating via siliconizing the substrate that was exposed to the mixed vapor (Si and SiO2) at high temperatures (1 923?2 273 K). Then the as-prepared coating was processed by a dipping and drying procedure with tetraethoxysilane as source materials to form SiO2 to fill the cracks and holes. Oxidation tests show that, after oxidation in air at 1 623 K for 10 h and thermal cycling between 1 623 K and room temperature 5 times, the mass loss of the CVR coated sample is up to 18.21%, while the sample coated with modified coating is only 5.96%, exhibiting an obvious improvement of oxidation and thermal shock resistance of the coating. The mass loss of the modified sample is mainly contributed to the reaction of C/C substrate with oxygen diffusing through the penetrating cracks formed in thermal shock tests.
基金Project(2009FJ1009) supported by the Major Science and Technology Program of Hunan Province,China
文摘To explicate the thermodynamics of the chromite ore lime-free roasting process, the thermodynamics of reactions involved in this process was calculated and the phrases of sinter with different roasting times were studied. The thermodynamics calculation shows that all the standard Gibbs free energy changes of the reactions to form Na2CrO4, Na2O-Fe2O3, Na2O·Al2O3 and Na2O3 SiO2 via chromite ore and Na2CO3 are negative, and the standard Gibbs free energy changes of the reactions between MgO, Fe2O3 and SiO2 released from chromite spinel to form MgO-Fe2O3 and MgO·SiO2 are also negative at the oxidative roasting temperatures (1 173 1 473 K). The phrase analysis of the sinter in lime-free roasting process shows that Na2O·Fe2O3, Na2O·Al2O3 and Na2O·SiO2 can be formed in the first 20 min, but they decrease in contents and finally disappear with the increase of roasting time. The final phase compositions of the sinter are Na2CrO4, MgO·Fe2O3, MgO·SiO2 and MgO. The results indicate that Na2CrO4 can be formed easily via the reaction ofNa2CO3 with chromite ore. Na2O·Fe2O3, Na2O-Al2O3 and Na2O·SiO2 can be formed as intermediate compounds in the roasting process and they can further react with chromite ore to form Na2CrO4. MgO released from chromite ore may react with iron oxides and silicon oxide to form stable compounds of MgO·Fe2O3 and MgO·SiO2, respectively.
基金Project(2021JJ30792) supported by the Natural Science Foundation of Hunan Province,ChinaProject(52170031) supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities,China。
文摘Unveiling the active site of an electrocatalyst is fundamental for the development of efficient electrode material.For the two-electron water oxidation to produce H_(2)O_(2),competitive reactions,including four-and one-electron water oxidation and surface reconstruction derived from the high-oxidative environment co-existed,leading to great challenges to identify the real active sites on the electrode.In this work,Ti/TiO_(2)-based electrodes calcined under air,nitrogen,or urea atmospheres were selected as electrocatalysts for two-electron water oxidation.Electrochemical analyses were applied to evaluate the catalytic activity and selectivity.The morphological and current change on the electrode surface were determined by scanning electrochemical microscopy,while the chemical and valence evolutions with depth distributions were tested by XPS combined with cluster argon ion sputtering.The results demonstrated that Ti/TiO_(2) nanotube arrays served as the support,while the functional groups of carbonyl groups and pyrrolic nitrogen derived from the co-pyrolysis with urea were the active sites for the H_(2)O_(2) production.This finding provided a new horizon to design efficient catalysts for H_(2)O_(2) production.