依据最大间距判别准则(Maximum margin criterion,MMC)的基本原理,并结合模糊技术和张量理论,提出一种矩阵模式的模糊最大间距判别准则(Matrix model fuzzy maximum margin criterion,MFMMC),并在此基础上形成具有模糊聚类功能的双向二...依据最大间距判别准则(Maximum margin criterion,MMC)的基本原理,并结合模糊技术和张量理论,提出一种矩阵模式的模糊最大间距判别准则(Matrix model fuzzy maximum margin criterion,MFMMC),并在此基础上形成具有模糊聚类功能的双向二维无监督特征提取方法(Two-directional two-dimensional unsupervised feature extraction method with fuzzy clustering ability,(2D)2UFFCA).该方法不但能直接实现矩阵模式数据的模糊聚类,而且还可以对矩阵模式数据进行双向二维特征提取,实现特征降维.同时我们还从几何的直观含义出发,合理地设定矩阵模式的模糊最大间距判别准则中的调节参数γ,并从理论上证明其合理性.为了提高特征提取的效率,还提出一种能有效计算矩阵模式数据的投影变换矩阵的方法.实验结果表明该方法具有上述优势.展开更多
针对当前无监督行人重识别方法因受到硬件差异、光照变化等客观因素的影响,导致同一行人图像出现较大反差,随之易带来样本错误伪标签生成的问题,使得现有无监督行人重识别方法还有待进一步提升的空间。为了解决此问题,提出了一种基于二...针对当前无监督行人重识别方法因受到硬件差异、光照变化等客观因素的影响,导致同一行人图像出现较大反差,随之易带来样本错误伪标签生成的问题,使得现有无监督行人重识别方法还有待进一步提升的空间。为了解决此问题,提出了一种基于二次重聚类的无监督行人重识别(unsupervised person re-identification based on quadratic clustering)方法。该方法主要包括全局二次聚类的无监督学习模块和基于聚类结果的有监督学习模块。具体来说,前者基于全局二次聚类分别对相机ID和行人身份ID进行无监督分析,解决了同一行人在不同摄像机视角下的统一成像风格问题;后者则采用有监督学习方式改进了内存字典的初始化与更新方式,解决了模型在训练中偏移的问题。通过此双模块的协同训练以共同抑制跨摄像头间采集的图像所产生错误伪标签的问题。所提出的算法分别在Market-1501、DukeMTMC-ReID、MSMT17、Person和VeRi-776数据集上进行实验,取得了mAP=81.2%和rank-1=91.2%、mAP=68.4%和rank-1=78.7%、mAP=31.1%和rank-1=60.4%、mAP=88.3%和rank-1=93.6%的性能,对比当前最先进的方法,分别提高了2.4、1.8、6.0、2.5和4.3个百分点的rank-1准确率。展开更多
移动边缘计算(mobile edge computing,MEC)环境下,海量的领域服务分布在边缘服务器上,如何对大规模的边缘服务进行精确的聚类是亟需解决的重要问题之一。为此提出了一种MEC环境下多维属性感知的边缘服务二次聚类方法。该方法首先分析并...移动边缘计算(mobile edge computing,MEC)环境下,海量的领域服务分布在边缘服务器上,如何对大规模的边缘服务进行精确的聚类是亟需解决的重要问题之一。为此提出了一种MEC环境下多维属性感知的边缘服务二次聚类方法。该方法首先分析并建立了MEC环境下边缘服务二次聚类指标模型。之后,提出了一种基于密度的最小生成树启发式分段聚类算法(heuristic segmented for MST clustering based on service density,DMSC),基于DMSC算法依据一级指标对边缘服务进行一次聚类。最后,将密度峰值算法中γ值引入到层次聚类中,构建了基于密度峰值的层次聚类算法(hierarchical clustering based on density peak,HCDP),基于HCDP算法依据二级聚类指标,在一次聚类的基础上对边缘服务进行二次聚类。在人工数据集和UCI数据集上开展了大量验证实验。实验结果表明,DMSC算法与HCDP算法提高了聚类的准确率,减少了算法的平均迭代次数,增强了算法的稳定性。展开更多
文摘针对当前无监督行人重识别方法因受到硬件差异、光照变化等客观因素的影响,导致同一行人图像出现较大反差,随之易带来样本错误伪标签生成的问题,使得现有无监督行人重识别方法还有待进一步提升的空间。为了解决此问题,提出了一种基于二次重聚类的无监督行人重识别(unsupervised person re-identification based on quadratic clustering)方法。该方法主要包括全局二次聚类的无监督学习模块和基于聚类结果的有监督学习模块。具体来说,前者基于全局二次聚类分别对相机ID和行人身份ID进行无监督分析,解决了同一行人在不同摄像机视角下的统一成像风格问题;后者则采用有监督学习方式改进了内存字典的初始化与更新方式,解决了模型在训练中偏移的问题。通过此双模块的协同训练以共同抑制跨摄像头间采集的图像所产生错误伪标签的问题。所提出的算法分别在Market-1501、DukeMTMC-ReID、MSMT17、Person和VeRi-776数据集上进行实验,取得了mAP=81.2%和rank-1=91.2%、mAP=68.4%和rank-1=78.7%、mAP=31.1%和rank-1=60.4%、mAP=88.3%和rank-1=93.6%的性能,对比当前最先进的方法,分别提高了2.4、1.8、6.0、2.5和4.3个百分点的rank-1准确率。
文摘移动边缘计算(mobile edge computing,MEC)环境下,海量的领域服务分布在边缘服务器上,如何对大规模的边缘服务进行精确的聚类是亟需解决的重要问题之一。为此提出了一种MEC环境下多维属性感知的边缘服务二次聚类方法。该方法首先分析并建立了MEC环境下边缘服务二次聚类指标模型。之后,提出了一种基于密度的最小生成树启发式分段聚类算法(heuristic segmented for MST clustering based on service density,DMSC),基于DMSC算法依据一级指标对边缘服务进行一次聚类。最后,将密度峰值算法中γ值引入到层次聚类中,构建了基于密度峰值的层次聚类算法(hierarchical clustering based on density peak,HCDP),基于HCDP算法依据二级聚类指标,在一次聚类的基础上对边缘服务进行二次聚类。在人工数据集和UCI数据集上开展了大量验证实验。实验结果表明,DMSC算法与HCDP算法提高了聚类的准确率,减少了算法的平均迭代次数,增强了算法的稳定性。