期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于二次模态分解重构及BiTCN-BiGRU模型的光伏短期发电功率预测
1
作者 文斌 章学勤 +2 位作者 付文龙 丁弈夫 封宣宇 《电力系统保护与控制》 北大核心 2025年第18期74-87,共14页
针对光伏功率序列具有非平稳性和波动性的特点导致预测模型预测精度偏低的问题,提出一种基于二次模态分解重构、双向时序卷积网络(bidirectional temporal convolutional network,BiTCN)-双向门控循环单元(bidirectional gated recircul... 针对光伏功率序列具有非平稳性和波动性的特点导致预测模型预测精度偏低的问题,提出一种基于二次模态分解重构、双向时序卷积网络(bidirectional temporal convolutional network,BiTCN)-双向门控循环单元(bidirectional gated recirculation unit,BiGRU)组合模型及与多策略改进沙猫群优化算法(multi-strategy improved sand cat swarm algorithm,MSCSO)相结合的光伏短期发电功率预测方法。首先,利用Spearman相关系数选取气象特征作为模型输入,并采用模糊C均值聚类方法进行相似日分类。其次,采用改进完全集合经验模态分解、变分模态分解对光伏功率序列进行分解并采用样本熵对分量进行重构。最后,建立Bi TCN-Bi GRU组合预测模型进行预测并通过MSCSO优化模型参数,将各分量预测结果叠加得到最终光伏功率预测值。通过与多种预测模型在不同天气条件和不同地区的对比分析,验证了所提模型具有更高的预测精度和良好的适应性。 展开更多
关键词 二次模态分解重构 沙猫群算法 双向时序卷积网络 双向门控循环单元 光伏功率预测
在线阅读 下载PDF
基于二次模态分解和深度学习的大坝变形预测模型 被引量:6
2
作者 刘相杰 刘小生 张龙威 《水利水电科技进展》 CSCD 北大核心 2024年第3期101-106,共6页
为充分提取大坝变形监测数据的非线性和非平稳性特征,深度挖掘其前后信息的拓扑关系,有效提高预测精度,提出了一种基于二次模态分解和蜣螂优化算法的双向长短期记忆神经网络大坝变形预测模型。该模型引入融合自适应噪声完备集成经验模... 为充分提取大坝变形监测数据的非线性和非平稳性特征,深度挖掘其前后信息的拓扑关系,有效提高预测精度,提出了一种基于二次模态分解和蜣螂优化算法的双向长短期记忆神经网络大坝变形预测模型。该模型引入融合自适应噪声完备集成经验模态分解和变分模态分解的二次模态分解对数据进行预处理,有效降低高频非平稳性分量对预测精度的不利影响,并利用蜣螂优化算法对双向长短期记忆神经网络进行超参数寻优以深度挖掘大坝变形数据的有效信息。以某水电站大坝为例,将该模型预测结果与多种常用模型的预测结果进行对比分析,结果表明该模型可有效挖掘大坝变形数据复杂的非线性特征,其预测精度明显优于对比模型,验证了该模型在大坝变形预测中的可行性与优越性。 展开更多
关键词 大坝变形预测 二次模态分解 蜣螂优化算法 双向长短期记忆神经网络
在线阅读 下载PDF
基于二次模态分解的LSTM短期电力负荷预测 被引量:12
3
作者 张淑娴 江文韬 +3 位作者 陈玉花 杨晓东 金丰 白莉 《科学技术与工程》 北大核心 2024年第7期2759-2766,共8页
为进一步提高短期电力负荷的预测精度,需要更深层次发掘负荷数据中隐藏的非线性关系。提出一种基于信号分解技术的二次模态分解的长短期记忆神经网络(long short-term memory network, LSTM)用于电力负荷的短期预测。所提算法先对原始... 为进一步提高短期电力负荷的预测精度,需要更深层次发掘负荷数据中隐藏的非线性关系。提出一种基于信号分解技术的二次模态分解的长短期记忆神经网络(long short-term memory network, LSTM)用于电力负荷的短期预测。所提算法先对原始负荷序列进行自适应噪声的完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN),再将CEEMDAN分解后分量中的强非平稳分量进行变分模态分解(variational mode decomposition, VMD),同时用中心频率法对VMD分解个数进行优化,然后将两次分解后得到的负荷子序列送入LSTM中进行预测,并将所得分量预测结果进行叠加。结果表明,本文所提方法对短期电力负荷预测结果精度和模型性能都有较大提升。 展开更多
关键词 短期负荷预测 二次模态分解 自适应噪声的完全集合经验模态分解(CEEMDAN) 变分模态分解(VMD) 长短期记忆网络(LSTM)
在线阅读 下载PDF
二次模态分解组合DBiLSTM-MLR的综合能源系统负荷预测 被引量:67
4
作者 陈锦鹏 胡志坚 +3 位作者 陈纬楠 高明鑫 杜一星 林铭蓉 《电力系统自动化》 EI CSCD 北大核心 2021年第13期85-94,共10页
用户级综合能源系统多元负荷存在随机性、波动性相对更大的特点,现有预测方法不能得到很好的预测效果。为此提出一种基于核主成分分析(KPCA)、二次模态分解、深度双向长短期记忆(DBiLSTM)神经网络和多元线性回归(MLR)的多元负荷预测模... 用户级综合能源系统多元负荷存在随机性、波动性相对更大的特点,现有预测方法不能得到很好的预测效果。为此提出一种基于核主成分分析(KPCA)、二次模态分解、深度双向长短期记忆(DBiLSTM)神经网络和多元线性回归(MLR)的多元负荷预测模型。首先,运用自适应噪声的完全集合经验模态分解分别对电、冷、热负荷进行本征模态分解,对分解得到的强非平稳分量运用变分模态分解进行再次分解。然后,运用KPCA对天气、日历规则特征集提取主成分实现数据降维;将分解得到的非平稳、平稳分量结合特征集主成分分别用DBiLSTM神经网络、MLR进行预测。最后,将预测结果进行重构得到最终预测结果。通过实际算例分析可知,与其他模型相比,所提模型具有更高的预测精度。 展开更多
关键词 多元负荷预测 深度双向长短期记忆 二次模态分解 核主成分分析 多元线性回归
在线阅读 下载PDF
耦合二次模态分解和优化LightGBM的大坝变形预测模型
5
作者 孔颢 丁勇 李登华 《大地测量与地球动力学》 2025年第11期1171-1179,共9页
提出一种结合二次模态分解与蝴蝶优化算法(BOA)优化轻量梯度提升机(LightGBM)的大坝变形预测模型。首先,利用自适应噪声完备集合经验模态分解(CEEMDAN)对训练集数据进行分解并计算分解子序列的复合熵;然后,通过K-means聚类算法将分解子... 提出一种结合二次模态分解与蝴蝶优化算法(BOA)优化轻量梯度提升机(LightGBM)的大坝变形预测模型。首先,利用自适应噪声完备集合经验模态分解(CEEMDAN)对训练集数据进行分解并计算分解子序列的复合熵;然后,通过K-means聚类算法将分解子序列分为高、低频两类,对高频信号数据进行变分模态分解(VMD);最后,使用BOA优化的LightGBM模型进行预测。实例表明,该方法能有效处理变形数据,提高数据平稳性,且预测精度明显优于传统方法,nMAPE、MSE、MAE指标分别降低16.2%~22.5%、16.8%~28.1%、16.2%~22.5%。 展开更多
关键词 二次模态分解 高低频信号划分 蝴蝶优化算法 轻量梯度提升机 变形预测
在线阅读 下载PDF
基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测 被引量:8
6
作者 马志侠 张林鍹 +3 位作者 巴音塔娜 谢明浩 张盼盼 王馨 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期429-435,共7页
为提高风电功率预测精度,提出基于自适应二次模态分解(QMD)、卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的超短期风电功率预测模型。针对风电功率的波动性,利用改进的完全自适应噪声集成经验模态分解方法(ICEEMDAN)对风电功率数据... 为提高风电功率预测精度,提出基于自适应二次模态分解(QMD)、卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的超短期风电功率预测模型。针对风电功率的波动性,利用改进的完全自适应噪声集成经验模态分解方法(ICEEMDAN)对风电功率数据进行分解。引入麻雀搜索算法(SSA)对变分模态分解(VMD)的分解数量与惩罚因子进行优化,使VMD具有自适应性。将ICEEMDAN分解得到的高频分量I_(1)用SSA-VMD进行第二次分解,降低序列不平稳度。同时,构建包含2层池化层的CNN网络进行特征提取与BiLSTM网络的超短期预测模型,最终的风电功率即为各子序列预测结果之和。通过算例分析进行实验表明,所提风电功率预测方法的预测精度优于其他模型,验证了预测模型的优越性。 展开更多
关键词 卷积神经网络 长短期记忆网络 变分模态分解 风电功率预测 二次模态分解 麻雀搜索算法
在线阅读 下载PDF
二次VMD筛选-MPE和FCM相结合的故障诊断方法 被引量:4
7
作者 周成江 吴建德 袁徐轶 《机械科学与技术》 CSCD 北大核心 2019年第8期1173-1184,共12页
针对单向阀振动信号含有背景噪声,故障特征提取困难和诊断精度不高的问题,提出了二次变分模态分解(二次VMD)、多尺度排列熵(MPE)和模糊C均值聚类(FCM)相结合的故障诊断方法。首先,通过二次VMD对振动信号进行分解,再使用双阈值法筛选得... 针对单向阀振动信号含有背景噪声,故障特征提取困难和诊断精度不高的问题,提出了二次变分模态分解(二次VMD)、多尺度排列熵(MPE)和模糊C均值聚类(FCM)相结合的故障诊断方法。首先,通过二次VMD对振动信号进行分解,再使用双阈值法筛选得到有用的本征模态函数(IMF)。其次,提取重构信号中具有敏感特性的MPE特征。最后,将故障特征输入至FCM得到聚类中心,并根据海明贴近度对待识别样本进行分类。通过多组对比实验,结果表明二次VMD筛选能有效去除噪声及虚假成分,MPE具有更好的敏感故障特征表征能力。同时,使用FCM对模糊特征进行聚类能够取得比传统支持向量机(SVM)更好的效果。 展开更多
关键词 变分模态分解 多尺度排列熵 双阈值法 单向阀 故障诊断
在线阅读 下载PDF
基于QMD-LDBO-BiGRU的风速预测模型 被引量:1
8
作者 陈禹 陈磊 +1 位作者 张怡 张志瑞 《广西师范大学学报(自然科学版)》 北大核心 2025年第4期38-57,共20页
针对风速的随机性和波动性,为了进一步提高预测精度,本文提出一种融合二次模态分解、改进的蜣螂优化算法以及双向门控循环单元的组合预测模型。首先,针对蜣螂优化算法(DBO)中存在的容易陷入局部最优、全局搜索能力差等问题,引入拉丁超... 针对风速的随机性和波动性,为了进一步提高预测精度,本文提出一种融合二次模态分解、改进的蜣螂优化算法以及双向门控循环单元的组合预测模型。首先,针对蜣螂优化算法(DBO)中存在的容易陷入局部最优、全局搜索能力差等问题,引入拉丁超立方抽样、切线飞行等策略对DBO进行改进,并将改进算法(LDBO)用于BiGRU的参数寻优;其次,利用二次模态分解降低原始数据的复杂度,为后续建模提供稳定的序列数据;然后,使用BiGRU分别对二次模态分解后所得到的各模态分量分别进行预测,叠加各模态分量的预测结果作为最终预测结果;最后,将所提出的QMD-LDBO-BiGRU预测模型与其他4种主流预测模型(CNN-LSTM、TCN-RVM、ELM-Adaboost、BiTCN-SVM)进行对比实验,结果表明QMD-LDBO-BiGRU模型的评价指标R^(2)达到98.086%,与对比模型相比分别提高21.396、19.525、11.474、5.457个百分点,验证了所提模型的有效性及适用性,为进一步提高风速预测的准确性提供一定参考。 展开更多
关键词 风速预测 二次模态分解 CEEMDAN VMD 蜣螂优化算法 双向门控循环单元
在线阅读 下载PDF
大坝变形的双向门控循环单元网络预测模型
9
作者 姚佳池 赵二峰 +1 位作者 刘峰 宋桂华 《水利水运工程学报》 北大核心 2025年第4期99-107,共9页
针对大坝变形序列的噪声信息,一次模态分解难以对其充分挖掘剔除,通过辛几何模态分解和改进的自适应噪声完备集合经验模态分解将变形实测序列解耦为不同频率的模态分量,使用最大信息系数对模态分量和实测序列进行相关性检验,并采用小波... 针对大坝变形序列的噪声信息,一次模态分解难以对其充分挖掘剔除,通过辛几何模态分解和改进的自适应噪声完备集合经验模态分解将变形实测序列解耦为不同频率的模态分量,使用最大信息系数对模态分量和实测序列进行相关性检验,并采用小波阈值对相关性弱的模态分量去噪重构,有效剔除实测序列中的噪声,利用基于注意力机制的双向门控循环单元网络模型对重构序列进行预测。应用实例表明,采用二次模态分解方法能有效剔除大坝变形实测序列中的噪声信息,建立的组合预测模型可以充分挖掘大坝变形与环境量之间的非线性关系且具有良好的泛化能力,为大坝长效服役性态预测提供了新方法。 展开更多
关键词 大坝变形 二次模态分解 小波阈值去噪 注意力机制 双向门控循环单元 预测模型
在线阅读 下载PDF
基于多尺度分量特征学习的用户级超短期负荷预测 被引量:9
10
作者 臧海祥 陈玉伟 +4 位作者 程礼临 朱克东 张越 孙国强 卫志农 《电网技术》 EI CSCD 北大核心 2024年第6期2584-2592,I0093-I0098,共15页
针对用户级负荷波动性强,一步分解后数据维度增加导致运行效率降低以及精度提升有限等问题,该文提出一种新的多尺度分量特征学习框架,用于用户级超短期负荷预测。构建基于自适应噪声的完整经验模态分解(complete ensemble empirical mod... 针对用户级负荷波动性强,一步分解后数据维度增加导致运行效率降低以及精度提升有限等问题,该文提出一种新的多尺度分量特征学习框架,用于用户级超短期负荷预测。构建基于自适应噪声的完整经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)以及变分模态分解(variational mode decomposition,VMD)的自适应二次模态分解框架,捕捉周期性等时序特征,并降低其非平稳特性;采用多维特征融合的方式挖掘各本征模态函数之间的耦合关系,丰富特征信息;利用改进的多尺度空间注意力(multiscale spatial attention,MSA)模块沿时间、空间以及通道等多尺度提取时空特征及多分量间耦合关系,进而便于卷积神经网络(convolutional neural network,CNN)学习多分量特征。基于江苏省南京市房地产业、教育业以及商务服务业共12位用户的实际负荷数据进行算例分析,各行业平均绝对百分误差分别为5.82%、4.54%以及8.78%,与效果最好的对照模型相比,分别降低了10.46%、6%以及7.48%,验证了该文模型具有较高的预测精度和良好的泛化性能。 展开更多
关键词 负荷预测 卷积神经网络 自适应二次模态分解 多尺度空间注意力机制
在线阅读 下载PDF
基于QMD-HBi GRU的短期光伏功率预测方法 被引量:11
11
作者 吉兴全 赵国航 +3 位作者 叶平峰 孟祥剑 杨明 张玉敏 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3850-3859,I0002-I0005,共14页
为了解决光伏功率数据固有的强不确定性导致单一预测模型预测精度不高的问题,提出一种基于二次模态分解和混合双向门控循环单元模型(hybrid bi-directional gated recurrent unit, HBiGRU)的短期光伏功率预测方法。首先,为应对光伏功率... 为了解决光伏功率数据固有的强不确定性导致单一预测模型预测精度不高的问题,提出一种基于二次模态分解和混合双向门控循环单元模型(hybrid bi-directional gated recurrent unit, HBiGRU)的短期光伏功率预测方法。首先,为应对光伏功率数据的不确定性,基于自适应噪声完备集合经验模态分解、样本熵和变分模态分解对光伏功率数据进行处理,得到一系列较为平稳的本征模函数分量;其次,构建HBi GRU模型以充分挖掘各分量与光伏功率影响因素之间的特征关系,得到各分量预测结果;最后,将各分量预测结果叠加得到短期光伏功率预测结果。以澳大利亚某地光伏电站数据进行测试,仿真结果表明:所提集成预测模型能够有效提高短期光伏功率预测精度,与其他预测模型相比,其归一化平均绝对误差和均方根误差分别降低了3.21%和5.04%,决定系数提高了22.7%。 展开更多
关键词 短期光伏功率预测 混合双向门控循环单元 自适应噪声完备集合经验模态分解 变分模态分解 二次模态分解 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部