针对测向定位中时延估计的问题,提出了一种基于递推最小二乘(Recursive Least Squares,RLS)算法的二次加权相关时延估计方法。该方法在二次相关算法基础上,一方面引入RLS算法,在二次相关前进行自适应滤波,提高系统抗噪能力,且具有较快...针对测向定位中时延估计的问题,提出了一种基于递推最小二乘(Recursive Least Squares,RLS)算法的二次加权相关时延估计方法。该方法在二次相关算法基础上,一方面引入RLS算法,在二次相关前进行自适应滤波,提高系统抗噪能力,且具有较快的收敛速度;另一方面借鉴广义互相关的思路,引入加权函数,并且采用二次加权方式,提高时延估计的性能。仿真结果表明,在低信噪比环境下,基于RLS的二次加权相关时延估计法使谱峰更加尖锐,抑制了噪声的影响,提高了估计的精度。展开更多
针对-SVD、FOCUSS 等稀疏重构算法应用波达方向(DOA)估计时,存在或运算量大、或精度不高的问题,提出了一种基于 FOCUSS 二次加权的信号 DOA 估计方法。将传统 DOA 估计表述为稀疏表示的信号模型,通过贝叶斯理论推导目标函数的最优解及...针对-SVD、FOCUSS 等稀疏重构算法应用波达方向(DOA)估计时,存在或运算量大、或精度不高的问题,提出了一种基于 FOCUSS 二次加权的信号 DOA 估计方法。将传统 DOA 估计表述为稀疏表示的信号模型,通过贝叶斯理论推导目标函数的最优解及加权矩阵,并在迭代过程中对结果进行二次加权优化,进一步增强恢复结果的稀疏性,提高恢复性能。仿真实验证明了该方法的优越性:与其他稀疏重构方法相比,该方法恢复精度高、稳健性好、运算量低。展开更多
文摘针对测向定位中时延估计的问题,提出了一种基于递推最小二乘(Recursive Least Squares,RLS)算法的二次加权相关时延估计方法。该方法在二次相关算法基础上,一方面引入RLS算法,在二次相关前进行自适应滤波,提高系统抗噪能力,且具有较快的收敛速度;另一方面借鉴广义互相关的思路,引入加权函数,并且采用二次加权方式,提高时延估计的性能。仿真结果表明,在低信噪比环境下,基于RLS的二次加权相关时延估计法使谱峰更加尖锐,抑制了噪声的影响,提高了估计的精度。
文摘针对-SVD、FOCUSS 等稀疏重构算法应用波达方向(DOA)估计时,存在或运算量大、或精度不高的问题,提出了一种基于 FOCUSS 二次加权的信号 DOA 估计方法。将传统 DOA 估计表述为稀疏表示的信号模型,通过贝叶斯理论推导目标函数的最优解及加权矩阵,并在迭代过程中对结果进行二次加权优化,进一步增强恢复结果的稀疏性,提高恢复性能。仿真实验证明了该方法的优越性:与其他稀疏重构方法相比,该方法恢复精度高、稳健性好、运算量低。