期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
事件驱动的深度信念网络软测量模型设计方法
1
作者 李征 庄铠泽 +2 位作者 赵东杰 宋燕星 王功明 《化工学报》 北大核心 2025年第4期1693-1701,共9页
针对复杂化工过程非平稳性、事件驱动性导致的关键指标参数难以精确软测量的问题,提出了一种事件驱动的深度信念网络(event-driven deep belief network,EDDBN)软测量模型设计方法。首先,获取化工过程运行数据并搭建深度信念网络(driven... 针对复杂化工过程非平稳性、事件驱动性导致的关键指标参数难以精确软测量的问题,提出了一种事件驱动的深度信念网络(event-driven deep belief network,EDDBN)软测量模型设计方法。首先,获取化工过程运行数据并搭建深度信念网络(driven deep belief network,DBN)模型,以数据驱动的方式对DBN模型进行训练,获得基于DBN的软测量模型。其次,根据DBN模型的训练误差变化特性定义事件,当积极事件发生时会加速当前模型参数的学习步长,当消极事件发生时会跳过当前数据样本并直接进入下一时刻的数据样本学习。这种事件驱动的选择性学习策略不仅能够有效地优化软测量模型训练过程,而且还能降低计算复杂度。同时,通过构造基于马尔可夫链的动态学习过程,分析任意连续两次事件对应输出性能势之差的有界性,给出了EDDBN训练过程的收敛性分析。最后,将EDDBN软测量模型用于湿法烟气脱硫系统二氧化硫(SO_(2))浓度软测量实验,结果表明所提出的EDDBN软测量模型能够在非平稳运行工况下实现对SO_(2)浓度快速、精确地预测分析,并且计算复杂度在数据集(1)和数据集(2)上分别降低约63.83%和63.33%。 展开更多
关键词 事件驱动的学习 深度信念网络 软测量 化工过程 湿法烟气脱硫系统
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部