期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
舆情事件向量预训练模型
1
作者 王楠 谭舒孺 +1 位作者 谢晓兰 李海荣 《计算机工程与应用》 CSCD 北大核心 2024年第18期189-197,共9页
目前舆情预测研究中,事件表示具有一定的主观性和静态性,没有充分表达出事件演化的动态性和演化性,很多特征需要通过分析事件发展的完整过程得到,导致构建的预测模型并不能实现舆情现象发生前的预警目的。构建了事件预训练模型,实现基... 目前舆情预测研究中,事件表示具有一定的主观性和静态性,没有充分表达出事件演化的动态性和演化性,很多特征需要通过分析事件发展的完整过程得到,导致构建的预测模型并不能实现舆情现象发生前的预警目的。构建了事件预训练模型,实现基于评论数据的事件特征向量自动生成,并用于训练下游舆情反转预测模型。结合事件的主观评论与时序信息,通过构造评论词、事件词向量、事件词、事件句,将抽象的事件特征向量生成问题转换为自然语言预处理问题,基于Transformer结构提出了一种新的建模方式,实现事件特征向量自动生成及舆情反转预测。提出的模型用于舆情反转预测下游任务时,在测试集中对反转事件的预测率达到100%,实现了反转点之前预测出反转现象的目的。同时,该预测模型还可以较为准确地预测生成第二天的事件句,在对测试集的n折交叉验证中仅有11%的事件出现了预测误差,为研究舆情演化相关问题提供数据和方法基础。 展开更多
关键词 舆情反转 事件特征预训练 舆情演化 自然语言处理 TRANSFORMER
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部