期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
动态事件时间数据的多任务Logistic生存预测方法
1
作者 阮灿华 林甲祥 《计算机应用》 CSCD 北大核心 2020年第5期1284-1290,共7页
事件时间数据广泛存在于临床医学研究领域,包含大量复杂的随时间变化的动态风险因子变量。为了对这些动态事件时间数据进行有效分析,克服生存模型参数假设的局限性,提出了一种多任务Logistic生存学习和预测方法。将生存预测转化为一系... 事件时间数据广泛存在于临床医学研究领域,包含大量复杂的随时间变化的动态风险因子变量。为了对这些动态事件时间数据进行有效分析,克服生存模型参数假设的局限性,提出了一种多任务Logistic生存学习和预测方法。将生存预测转化为一系列不同时间点的多任务二元生存分类问题,利用动态风险因子变量的全部观测值估计累积风险。通过对事件样本和删失样本的全数据学习正则化Logistic回归参数。评估风险因子与事件时间的动态关系,根据生存概率估计事件时间。在多个实际临床数据集上开展的对比实验验证了提出的多任务预测方法对于动态数据不仅具有较强的适用性,而且能够保障预测结果的准确性和可靠性。 展开更多
关键词 多任务学习 生存预测 LOGISTIC回归 事件时间数据 风险因子变量 删失
在线阅读 下载PDF
时间事件序列数据可视化综述 被引量:9
2
作者 彭燕妮 樊晓平 +1 位作者 赵颖 周芳芳 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第10期1698-1710,共13页
时间事件序列数据,是由一个或多个记录构成的集合,每个记录由一组带有时间戳的事件类别组成.数据可视化被广泛用于时间事件序列数据的频繁模式发现、相似模式匹配与查询以及潜在阶段模式检测.文中介绍了时间事件序列数据的特征,并重点... 时间事件序列数据,是由一个或多个记录构成的集合,每个记录由一组带有时间戳的事件类别组成.数据可视化被广泛用于时间事件序列数据的频繁模式发现、相似模式匹配与查询以及潜在阶段模式检测.文中介绍了时间事件序列数据的特征,并重点从时间事件序列数据的可视化呈现方法和可视分析2个方面对已有的工作进行了系统的整理.在可视化呈现方式上,将现有的可视化方法分为4个类别,即基于GanttChart、基于Flow、基于StoryLines及基于矩阵的可视化方法,并分别介绍了相关类别的可视化方法的发展;将可视分析任务总结为4类主要任务,即模式发现与探索、可视化查询、对比分析及结果事件分析,并且从这些可视分析任务的角度总结了现有的可视分析工具.最后,对时间事件序列数据可视化面临的挑战以及未来趋势进行了总结和展望,以期为时间事件序列数据分析提供新的思路. 展开更多
关键词 时间事件序列数据 信息可视化 可视分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部