期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
面向乳腺超声分类的低尺度形态特征重校准方法
1
作者 龚勋 朱丹 +1 位作者 杨子奇 罗俊 《西南交通大学学报》 EI CSCD 北大核心 2024年第3期539-546,563,共9页
针对乳腺超声图像具有类内差异大、类间差异小以及结节形状复杂多变等问题,提出一种形状特征重校准的乳腺超声图像算法,实现乳腺超声的自动化诊断.首先,构建端到端的网络模型,采用渐进训练方式,充分学习图像中更具辨别力的区域,获取更... 针对乳腺超声图像具有类内差异大、类间差异小以及结节形状复杂多变等问题,提出一种形状特征重校准的乳腺超声图像算法,实现乳腺超声的自动化诊断.首先,构建端到端的网络模型,采用渐进训练方式,充分学习图像中更具辨别力的区域,获取更细粒度的特征信息;其次,提出分区打乱机制,降低网络中打乱图像时破坏结节区域所产生的噪声;然后,将模型底层提取的特征与通过掩膜图像获得的形状特征进行重校准,提出低尺度重校准损失函数;最后,构建一个包含1550张乳腺超声图像数据集LSRD(low-scale recalibration database),验证所提方法的有效性.实验结果表明:本文模型在LSRD上准确率94.3%、敏感性91.2%、特异性93.6%、ROC(receiver operator characteristic curve)与坐标围成的面积(area under curve,AUC)为0.941,均优于对比模型;在BUSI(breast ultrasound image)数据集上,相较于对比模型,其分类精度提升3.3%. 展开更多
关键词 形状特征 分区打乱机制 低尺度重校准 乳腺癌分类
在线阅读 下载PDF
基于深度级联森林的乳腺癌基因数据分类研究 被引量:2
2
作者 秦喜文 王芮 张斯琪 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第2期177-185,共9页
乳腺癌基因数据的分类研究在临床医学上具有重要意义。针对基因数据的结构复杂、高维小样本等特点,提出一种最大相关最小条件冗余和深度级联森林结合的基因数据分类方法。选取博德基因研究所乳腺癌基因表达数据集,共98个数据作为样本,... 乳腺癌基因数据的分类研究在临床医学上具有重要意义。针对基因数据的结构复杂、高维小样本等特点,提出一种最大相关最小条件冗余和深度级联森林结合的基因数据分类方法。选取博德基因研究所乳腺癌基因表达数据集,共98个数据作为样本,每个样本包含1 213个特征基因。首先对数据进行标准化处理,然后利用最大相关最小条件冗余选取特征子集,最后使用深度级联森林对特征子集进行分类。将随机森林、支持向量机和BP神经网络作为对比方法。结果表明,所提出的最大相关最小条件冗余和深度级联森林结合方法的最佳分类准确率达到93.78%,明显优于其他方法。该方法能有效提高乳腺癌基因数据的分类准确率,对基于基因数据的乳腺癌分类具有重要的理论意义与实用价值。 展开更多
关键词 乳腺癌分类 基因表达数据 变量选择 最大相关最小冗余 深度级联森林
在线阅读 下载PDF
基于Cycle-GAN和改进DPN网络的乳腺癌病理图像分类 被引量:5
3
作者 张雪芹 李天任 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第4期727-735,共9页
针对病理图像染色不均匀及良恶性难以鉴别的问题,提出基于Cycle-GAN和改进的双路径网络(DPN)的算法框架.利用Cycle-GAN进行颜色归一化处理,解决因病理图像染色不均匀导致的检测模型精度偏低问题,通过对图像进行重叠切片,基于DPN网络采... 针对病理图像染色不均匀及良恶性难以鉴别的问题,提出基于Cycle-GAN和改进的双路径网络(DPN)的算法框架.利用Cycle-GAN进行颜色归一化处理,解决因病理图像染色不均匀导致的检测模型精度偏低问题,通过对图像进行重叠切片,基于DPN网络采用增加小卷积、反卷积和注意力机制,增强模型对病理图像纹理特征的分类能力.在BreaKHis数据集上的实验结果表明,所提算法有效提高了乳腺癌病理图像良恶性分类的准确性. 展开更多
关键词 乳腺癌病理图像分类 深度学习 Cycle-GAN网络 双路径网络(DPN) 注意力机制
在线阅读 下载PDF
基于融合多网络深层卷积特征和稀疏双关系正则化方法的乳腺癌图像分类研究 被引量:6
4
作者 王永军 黄芳琳 +3 位作者 黄珊 姜峰 雷柏英 汪天富 《中国生物医学工程学报》 CAS CSCD 北大核心 2020年第5期532-540,共9页
乳腺癌是全球女性癌症死亡的主要原因之一。现有诊断方法主要是医生通过乳腺癌观察组织病理学图像进行判断,不仅费时费力,而且依赖医生的专业知识和经验,使得诊断效率无法令人满意。针对以上问题,设计基于组织学图像的深度学习框架,以... 乳腺癌是全球女性癌症死亡的主要原因之一。现有诊断方法主要是医生通过乳腺癌观察组织病理学图像进行判断,不仅费时费力,而且依赖医生的专业知识和经验,使得诊断效率无法令人满意。针对以上问题,设计基于组织学图像的深度学习框架,以提高乳腺癌诊断准确性,同时减少医生的工作量。开发一个基于多网络特征融合和稀疏双关系正则化学习的分类模型:首先,通过子图像裁剪和颜色增强进行乳腺癌图像预处理;其次,使用深度学习模型中典型的3种深度卷积神经网络(Inception V3、Res Net-50和VGG-16),提取乳腺癌病理图像的多网络深层卷积特征并进行特征融合;最后,通过利用两种关系("样本-样本"和"特征-特征"关系)和lF正则化,提出一种有监督的双关系正则化学习方法进行特征降维,并使用支持向量机将乳腺癌病理图像区分为4类—正常、良性、原位癌和浸润性癌。实验中,通过使用ICIAR 2018公共数据集中的400张乳腺癌病理图像进行验证,获得93%的分类准确性。融合多网络深层卷积特征可以有效地捕捉丰富的图像信息,而稀疏双关系正则化学习可以有效降低特征冗余并减少噪声干扰,有效地提高模型的分类性能。 展开更多
关键词 乳腺癌病理图像分类 深度卷积特征融合 有监督特征选择 支持向量机
在线阅读 下载PDF
基于多尺度通道重校准的乳腺癌病理图像分类 被引量:9
5
作者 明涛 王丹 +1 位作者 郭继昌 李锵 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第7期1289-1297,共9页
针对乳腺癌病理图像的自动分类问题,提出基于深度学习的分类算法.通道重校准模型是作用于特征通道的注意力模型,可以利用学习到的通道权重对无用特征进行抑制来实现对特征通道的重校准,以达到更高的分类准确率.为了使通道重校准的结果... 针对乳腺癌病理图像的自动分类问题,提出基于深度学习的分类算法.通道重校准模型是作用于特征通道的注意力模型,可以利用学习到的通道权重对无用特征进行抑制来实现对特征通道的重校准,以达到更高的分类准确率.为了使通道重校准的结果更加准确,提出多尺度通道重校准模型,设计卷积神经网络msSE-ResNet.多尺度特征通过网络中的最大池化层获得并作为后续通道重校准模型的输入,将不同尺度下学到的通道权重进行融合,可以改善通道重校准的结果.该实验在公开数据集BreaKHis上开展.实验结果表明,该网络对良性/恶性乳腺病理图像分类任务达到88.87%的分类精度,可以对不同放大倍数下获取的病理图像具有较好的鲁棒性. 展开更多
关键词 乳腺癌病理图像分类 深度学习 残差网络 多尺度特征 通道重校准模型
在线阅读 下载PDF
改进鲸鱼算法优化支持向量机实现乳腺癌预测 被引量:1
6
作者 高涛 袁德成 《现代电子技术》 北大核心 2024年第11期156-160,共5页
为了更好地通过人体肥胖的相关指数预测乳腺癌的存在,以抵抗素、葡萄糖、年龄和身体质量指数作为数据特征构造预测模型,通过研究支持向量机(SVM)的参数对模型的性能影响,提出一种基于自适应机制策略改进的鲸鱼算法,即参数自适应鲸鱼优... 为了更好地通过人体肥胖的相关指数预测乳腺癌的存在,以抵抗素、葡萄糖、年龄和身体质量指数作为数据特征构造预测模型,通过研究支持向量机(SVM)的参数对模型的性能影响,提出一种基于自适应机制策略改进的鲸鱼算法,即参数自适应鲸鱼优化算法(PAWOA)用来寻找最优参数。采用Tent映射对种群位置初始化,引入自适应参数p^(*)代替随机阈值加速收敛速度,针对给定的目标函数对每个搜索个体进行求解,计算适应度后找到全局最优解,增强种群的全局寻优性能。实验结果表明,优化后的模型精确度提升12.44%,召回率提升13.57%,F_(1)评分提升13.14%。可见,该预测模型拥有更好的效果可以用于辅助判断乳腺癌。 展开更多
关键词 鲸鱼优化算法 支持向量机 自适应参数 数据预处理 乳腺癌细胞分类 TENT映射
在线阅读 下载PDF
BP算法与C4.5算法在乳腺癌诊断中的比较分析 被引量:2
7
作者 杨云 董雪 齐勇 《陕西科技大学学报(自然科学版)》 2015年第3期163-166,172,共5页
目前数据挖掘技术被大量应用于医学领域,进行疾病诊断。针对乳腺癌发病率不断升高,为辅助医生做出诊断决策,采用具有优秀学习能力的人工神经网络中的BP算法与决策树中的C4.5算法来分析乳腺癌数据,对乳腺癌肿瘤类型进行诊断预测,并对这... 目前数据挖掘技术被大量应用于医学领域,进行疾病诊断。针对乳腺癌发病率不断升高,为辅助医生做出诊断决策,采用具有优秀学习能力的人工神经网络中的BP算法与决策树中的C4.5算法来分析乳腺癌数据,对乳腺癌肿瘤类型进行诊断预测,并对这两种算法建立的分类器性能进行比较分析,研究发现BP算法与C4.5算法都能对乳腺癌类型作出诊断预测,但在分类器的评估中发现BP分类器的性能优于C4.5分类器. 展开更多
关键词 乳腺癌分类 BP算法 C4.5算法 分类器性能
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部