采用水热法制备了高分散碳载Pt/C和Pt-SnO2/C电催化剂。采用XRD、SEM、TEM和激光粒度仪等方法对制得的纳米催化剂进行了表面微观结构分析。采用电化学工作站测试循环伏安曲线(CV)等表征Pt/C和Pt-SnO2/C纳米催化剂电催化活性。测试结果表...采用水热法制备了高分散碳载Pt/C和Pt-SnO2/C电催化剂。采用XRD、SEM、TEM和激光粒度仪等方法对制得的纳米催化剂进行了表面微观结构分析。采用电化学工作站测试循环伏安曲线(CV)等表征Pt/C和Pt-SnO2/C纳米催化剂电催化活性。测试结果表明,Pt-SnO2/C纳米催化剂的峰电流密度(131.05 m A·cm-2)是Pt/C催化剂的峰电流密度(65.48 m A·cm-2)的2倍;Pt-SnO2/C催化的电化学表面积(108.4 m2·g-1)远高于Pt/C催化剂的电化学表面积(99.14 m2·g-1);Pt-SnO2/C纳米粒子比Pt/C纳米粒子具有更强的抗CO中毒能力和更高的电催化活性。展开更多
制备了Pd-MoO2/C作为乙醇阳极催化剂,循环伏安,计时电流测试结果表明该催化剂对乙醇氧化具有良好的活性和稳定性能。制备了以Pd-MoO2/C作催化剂的阳极,与空气电极组装了乙醇燃料电池,采用恒流放电法测试了电池的放电性能。组装了4个单...制备了Pd-MoO2/C作为乙醇阳极催化剂,循环伏安,计时电流测试结果表明该催化剂对乙醇氧化具有良好的活性和稳定性能。制备了以Pd-MoO2/C作催化剂的阳极,与空气电极组装了乙醇燃料电池,采用恒流放电法测试了电池的放电性能。组装了4个单电池组成的电池组,以该电池组负载一个2.5 V 0.3 A的灯泡,在常温下可稳定运行。向电池的阳极槽中添加乙醇,电池可持续放电。展开更多
文摘采用水热法制备了高分散碳载Pt/C和Pt-SnO2/C电催化剂。采用XRD、SEM、TEM和激光粒度仪等方法对制得的纳米催化剂进行了表面微观结构分析。采用电化学工作站测试循环伏安曲线(CV)等表征Pt/C和Pt-SnO2/C纳米催化剂电催化活性。测试结果表明,Pt-SnO2/C纳米催化剂的峰电流密度(131.05 m A·cm-2)是Pt/C催化剂的峰电流密度(65.48 m A·cm-2)的2倍;Pt-SnO2/C催化的电化学表面积(108.4 m2·g-1)远高于Pt/C催化剂的电化学表面积(99.14 m2·g-1);Pt-SnO2/C纳米粒子比Pt/C纳米粒子具有更强的抗CO中毒能力和更高的电催化活性。
文摘制备了Pd-MoO2/C作为乙醇阳极催化剂,循环伏安,计时电流测试结果表明该催化剂对乙醇氧化具有良好的活性和稳定性能。制备了以Pd-MoO2/C作催化剂的阳极,与空气电极组装了乙醇燃料电池,采用恒流放电法测试了电池的放电性能。组装了4个单电池组成的电池组,以该电池组负载一个2.5 V 0.3 A的灯泡,在常温下可稳定运行。向电池的阳极槽中添加乙醇,电池可持续放电。