期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于主题声望和动态异构网络的学术影响力排序算法
1
作者 陈潘 陈红梅 罗川 《计算机科学》 CSCD 北大核心 2024年第3期81-89,共9页
有效地挖掘学术大数据,分析论文的学术影响力,有助于科研工作者获取重要的信息。文本内容与学术网络结构的动态变化,会对论文的学术影响力排名结果产生重要的影响。但现有的论文学术影响力排序算法或是缺乏对文本内容的考虑,或是缺乏对... 有效地挖掘学术大数据,分析论文的学术影响力,有助于科研工作者获取重要的信息。文本内容与学术网络结构的动态变化,会对论文的学术影响力排名结果产生重要的影响。但现有的论文学术影响力排序算法或是缺乏对文本内容的考虑,或是缺乏对学术网络结构的动态变化的考虑。针对该问题,提出了一种学术影响力排序算法,称之为基于主题声望和动态异构网络的学术影响力排名(TND-Rank)。TND-Rank衡量了论文主题在某一时间对论文的影响,并将其嵌入考虑时间因素的论文影响力排序算法中。TND-Rank通过考虑影响主题声望水平、期刊、作者、时间等多种因素的综合影响来计算论文的动态学术影响力相关排名。在实验中,对AMiner数据集1936-2014年间发表且信息保存完整的文章进行了分析,将所提算法与近年来的4种相关算法进行了比较,采用Spearman相关系数、归一化折损累积增益(NDCG)和分级平均精度(GAP)对算法性能进行了评估。实验结果验证了TND-Rank算法的可行性和有效性,其可以有效地综合各种信息对论文的学术影响力进行排序。 展开更多
关键词 异构网络 学术影响力 学术大数据 主题声望 论文排序
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部