期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于双信号融合的主轴/刀柄结合面刚度退化程度预测
1
作者 吴石 张勇 +1 位作者 王宇鹏 王春风 《中国机械工程》 EI CAS CSCD 北大核心 2024年第8期1449-1461,共13页
为了预测主轴/刀柄结合面刚度退化程度,提出了一种基于激励和响应信号融合的主轴/刀柄结合面刚度退化程度预测方法。首先进行钛合金矩形工件侧铣实验,采集瞬时铣削力信号和主轴/刀柄结合面附近的响应振动信号,构建反映主轴/刀柄结合面... 为了预测主轴/刀柄结合面刚度退化程度,提出了一种基于激励和响应信号融合的主轴/刀柄结合面刚度退化程度预测方法。首先进行钛合金矩形工件侧铣实验,采集瞬时铣削力信号和主轴/刀柄结合面附近的响应振动信号,构建反映主轴/刀柄结合面刚度退化的数据库。然后根据数据库中瞬时铣削力和振动信号各方向的时域、频域和时频域特征,基于相关性分析优选出瞬时铣削力信号和振动信号的时域均值、频域中心频率、时频域一阶小波包能量3个特征,分别使用低频滤波卷积核和高频滤波卷积核对优选后的特征矩阵进行双通道卷积池化处理,获取深度融合的主轴/刀柄结合面刚度退化程度特征向量。最后以支持向量机模型(SVM)的概率模式转化为朴素贝叶斯分类器(NBC)的条件概率,构建混合分类器模型(NBC-SVM),提高了分类器的分类性能。在主轴/刀柄结合面刚度退化数据库的基础上,基于双通道卷积池化的特征融合方法(CP-FF)和NBC-SVM模型实现了主轴/刀柄结合面刚度退化程度的预测,预测精度达96%。 展开更多
关键词 主轴/刀柄结合面 刚度退化 特征融合 朴素贝叶斯分类器支持向量机模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部