期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于空间插值的西安市重空气污染期间主要污染物时空变化特征及相关性分析 被引量:24
1
作者 白杨 杨剑 +4 位作者 陈鹏 温宥越 邝红艳 何煜然 张亚青 《环境科学研究》 EI CAS CSCD 北大核心 2020年第4期809-819,共11页
西安市是我国承东启西、连接南北的战略性枢纽城市,但其长期受到重空气污染的影响.基于2018年11月24日—12月3日西安市及其周边7个地级市共38个环境质量监测站点的逐时数据,利用空间插值、趋势分析和相关性分析方法,研究了西安市一次重... 西安市是我国承东启西、连接南北的战略性枢纽城市,但其长期受到重空气污染的影响.基于2018年11月24日—12月3日西安市及其周边7个地级市共38个环境质量监测站点的逐时数据,利用空间插值、趋势分析和相关性分析方法,研究了西安市一次重空气污染期间六大污染物(PM2.5、PM10、CO、NO2、SO2和O3)的质量浓度时空变化及彼此间的相关关系.结果表明:①IDW(inverse distance weighting,反距加权插值法)和OKri(ordinary Kriging,普通克里格插值法)均能较好地获得西安市空气污染物的时空变化情况,但IDW的插值精度优于OKri,距离指数为7的IDW可以满足西安市空气污染物时空变化模拟的要求.②研究期间,西安市首要污染物为PM2.5和PM10,二者分别是中度-重度污染及严重-“爆表”污染天气的首要贡献因子.③ρ(PM2.5)、ρ(PM10)、ρ(CO)、ρ(NO2)和ρ(SO2)均呈中部高、两边低,北部高、南部低的空间分布特点,而ρ(O3)则相反;PM2.5、PM10、O3污染程度日趋严重,NO2污染程度逐渐缓解.④ρ(PM2.5)、ρ(NO2)、ρ(CO)之间呈中等正相关,三者在时空变化上具有较高的一致性;ρ(SO2)与ρ(PM2.5)、ρ(NO2)、ρ(CO)均呈弱正相关;ρ(O3)与ρ(NO2)、ρ(CO)均呈弱负相关.受扬尘天气和特殊风向及地形共同影响,西安市PM 10出现“爆表”现象,导致ρ(PM10)与其他污染物质量浓度之间的相关性不明显.研究显示,距离指数为7的IDW适合西安市空气污染情况时空变化的模拟,重污染天气条件下,西安市ρ(PM2.5)、ρ(NO2)、ρ(CO)之间具有较高的同源性,但各污染物间时空变化和相关性关系较复杂. 展开更多
关键词 污染 主要空气污染物 西安市 时空变化 相关分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部