期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种基于降维的肤色特征提取和肤色检测方法 被引量:3
1
作者 张弛 王庆 《计算机工程与科学》 CSCD 北大核心 2009年第2期34-36,49,共4页
本文提出了一种综合多个颜色空间分量的肤色特征提取方法,并通过SVM分类器进行肤色和非肤色的分类,从而实现肤色检测。特征提取先后采用了PFA和KPCA算法。肤色检测的实质是肤色和非肤色分类问题。针对先前提取的特征,采用基于SVM分类器... 本文提出了一种综合多个颜色空间分量的肤色特征提取方法,并通过SVM分类器进行肤色和非肤色的分类,从而实现肤色检测。特征提取先后采用了PFA和KPCA算法。肤色检测的实质是肤色和非肤色分类问题。针对先前提取的特征,采用基于SVM分类器进行分类。实验结果表明,基于PFA、KPCA特征提取和SVM分类的肤色检测正确率可以达到87.76%,误判率仅为14.62%。 展开更多
关键词 肤色检测 主特征分析 核的成分分析 支撑向量机
在线阅读 下载PDF
基于有限元与改进SVM的飞行器结构无损检测模型设计
2
作者 朱淑云 曾萍萍 《现代电子技术》 北大核心 2024年第20期136-140,共5页
针对传统飞行器结构无损检测中存在的准确度低且易造成二次破坏等问题,以有限元仿真为数据基础,提出一种基于改进支持向量机的飞行器结构无损检测模型。该模型使用主元分析法对数据主特征进行分析,解决了有限元仿真数据维度高的问题;利... 针对传统飞行器结构无损检测中存在的准确度低且易造成二次破坏等问题,以有限元仿真为数据基础,提出一种基于改进支持向量机的飞行器结构无损检测模型。该模型使用主元分析法对数据主特征进行分析,解决了有限元仿真数据维度高的问题;利用二叉树的思想改进了传统支持向量机,使其具备多特征分类能力,并对多数据特征加以分类,提高了模型的收敛准确度;还通过引入粒子群算法优化多分类向量机的惩罚因子及核函数参数。实验测试结果表明,所提模型可实现分类器参数的性能优化,平均分类准确率较对比算法提升了约1.4%。 展开更多
关键词 飞行器结构 无损检测 支持向量机 有限元仿真 分析 粒子群算法 主特征分析 二叉树
在线阅读 下载PDF
Risk based security assessment of power system using generalized regression neural network with feature extraction 被引量:2
3
作者 M. Marsadek A. Mohamed 《Journal of Central South University》 SCIE EI CAS 2013年第2期466-479,共14页
A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural n... A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy. 展开更多
关键词 generalized regression neural network line overload low voltage principle component analysis risk index voltagecollapse
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部