期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
改进的冗余捷联惯组故障检测与隔离主成分析法
1
作者 叶松 袁艳艳 《导弹与航天运载技术》 CSCD 北大核心 2019年第4期63-67,共5页
针对冗余捷联惯组故障检测问题,提出了一种改进的主成分析(Principal Component Analysis Algorithm,PCA)算法。思路是将PCA方法和奇偶空间方法的优点结合,通过PCA方法分析影响故障的主要因素,奇偶向量运算消除载体机动影响,并对奇偶矢... 针对冗余捷联惯组故障检测问题,提出了一种改进的主成分析(Principal Component Analysis Algorithm,PCA)算法。思路是将PCA方法和奇偶空间方法的优点结合,通过PCA方法分析影响故障的主要因素,奇偶向量运算消除载体机动影响,并对奇偶矢量进行滤波。仿真结果表明随着滤波器的作用,能够检测到的故障幅值降低,提高故障检测的灵敏度。所提出的理论及方法可行,为箭载冗余惯组故障检测与隔离提供一种理论参考。 展开更多
关键词 故障检测与隔离 奇偶向量 主成分析法 冗余捷联惯组
在线阅读 下载PDF
主成份分析法在食品业经营决策中的应用研究
2
作者 李永江 孟照军 《商业研究》 北大核心 2001年第3期71-72,共2页
在激烈的市场竞争中,面对众多的食品种类和众多的消费者群,食品业能否做出正确的经营决策,关键在于是否取得了真实可靠的数据并采用了科学的定量分析方法。主成份分析法在这方面应发挥其有力的作用。
关键词 分析 食品业 经营决策 应用研究
在线阅读 下载PDF
基于稀疏主成分的股票指数追踪研究 被引量:4
3
作者 周静 武忠祥 《工程数学学报》 CSCD 北大核心 2013年第2期159-168,共10页
本文将追踪误差定义为股票投资组合收益率与所追踪指数的基准收益率之差,分别在无交易费用和有交易费用的情况下,建立追踪误差极小化的股票指数预测模型.首先采用稀疏主成分分析法对沪深300以及香港恒生的股票进行选择,然后根据所选择... 本文将追踪误差定义为股票投资组合收益率与所追踪指数的基准收益率之差,分别在无交易费用和有交易费用的情况下,建立追踪误差极小化的股票指数预测模型.首先采用稀疏主成分分析法对沪深300以及香港恒生的股票进行选择,然后根据所选择的股票样本求解股票指数预测模型.数值实验表明基于稀疏主成分的股票指数追踪模型具有稀疏性、可解释性及较好的样本外追踪误差的优点. 展开更多
关键词 稀疏主成分析法 追踪误差 指数预测模型
在线阅读 下载PDF
中国工业行业科技原创力的区域差异研究——基于31省市数据的实证分析
4
作者 刘艳 黄荣斌 《区域经济评论》 2013年第6期47-52,共6页
在经济全球化加速发展和科技创新突飞猛进的背景下,不断提升我国工业行业的科技原创力水平,是促进我国产业技术水平发展、实现产业结构升级优化与产业国际竞争力提升的必然选择。利用主成分分析法对中国工业行业科技原创力进行的区域差... 在经济全球化加速发展和科技创新突飞猛进的背景下,不断提升我国工业行业的科技原创力水平,是促进我国产业技术水平发展、实现产业结构升级优化与产业国际竞争力提升的必然选择。利用主成分分析法对中国工业行业科技原创力进行的区域差异分析,可以说明在我国三大区域间及三大区域内部各省区间,均存在较为明显的工业行业科技原创力发展水平差异。通过构建包含"创新主体—创新行为—创新环境"三要素在内的分析框架,则可以进一步说明其产生原因。 展开更多
关键词 工业行业 科技原创力 区域差异 主成分析法
在线阅读 下载PDF
Influencing factor of the characterization and restoration of phase aberrations resulting from atmospheric turbulence based on Principal Component Analysis
5
作者 WANG Jiang-pu-zhen WANG Zhi-qiang +2 位作者 ZHANG Jing-hui QIAO Chun-hong FAN Cheng-yu 《中国光学(中英文)》 北大核心 2025年第4期899-907,共9页
Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high com... Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction. 展开更多
关键词 phase aberration atmospheric turbulence principal component analysis Zernike polynomials
在线阅读 下载PDF
基于混合型专家系统的资信评估系统模型设计与实现 被引量:4
6
作者 金剑 林成德 《计算机应用》 CSCD 北大核心 2003年第4期81-83,共3页
文章探讨将人工神经网络与专家系统结合应用于商业银行企业信用评估 ,并以一个混合型专家系统ECAMES(EnterpriseCreditAssessmentMixedExpertSystem)为例 ,阐述了混合型专家系统模型的设计与实现。
关键词 混合型专家系统 资信评估系统模型 设计 人工神经网络 主成分析法 财务分析 企业
在线阅读 下载PDF
Real-time lane departure warning system based on principal component analysis of grayscale distribution and risk evaluation model 被引量:4
7
作者 张伟伟 宋晓琳 张桂香 《Journal of Central South University》 SCIE EI CAS 2014年第4期1633-1642,共10页
A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and... A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning. 展开更多
关键词 lane departure warning system lane detection lane tracking principal component analysis risk evaluation model ARM-based real-time system
在线阅读 下载PDF
Application of SVM and PCA-CS algorithms for prediction of strip crown in hot strip rolling 被引量:16
8
作者 JI Ya-feng SONG Le-bao +3 位作者 SUN Jie PENG Wen LI Hua-ying MA Li-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2333-2344,共12页
To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance... To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling. 展开更多
关键词 strip crown support vector machine principal component analysis cuckoo search algorithm particle swarm optimization algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部