期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于主成分变换的ASAR数据水稻种植面积提取 被引量:24
1
作者 汪小钦 王钦敏 +2 位作者 史晓明 凌飞龙 朱晓铃 《农业工程学报》 EI CAS CSCD 北大核心 2008年第10期122-126,共5页
合成孔径雷达(SAR)数据是多云多雨地区水稻监测的重要数据源,多极化的SAR数据有利于识别精度的提高。通过对水稻生长期ENVISAT ASAR双极化数据后向散射系数分析得知,水稻VV极化的后向散射系数比VH极化大,两者总体上都随着水稻的生长而... 合成孔径雷达(SAR)数据是多云多雨地区水稻监测的重要数据源,多极化的SAR数据有利于识别精度的提高。通过对水稻生长期ENVISAT ASAR双极化数据后向散射系数分析得知,水稻VV极化的后向散射系数比VH极化大,两者总体上都随着水稻的生长而增大。在水稻生长后期,VV极化保持稳定,略有下降,VH极化持续增大。对6个通道的ASAR进行主成分变换,发现水稻种植区在第二主分量(PC2)上值较大,色调很亮,而在第五主分量(PC5)上值较低,色调很暗,分别反映了VV极化和VH极化在水稻生长茂盛期与生长初期的差异,两者差值(PC2-PC5)突出了水稻与其它地类的差异。利用主成分分量的差值(PC2-PC5),基于面向对象分类方法,建立了水稻种植区快速提取方法。利用该方法对福州地区2004年早稻面积进行提取,获得了满意的结果。 展开更多
关键词 ENVISATASAR 水稻种植面积 成分变换 主成分分量差值 面向对象分类
在线阅读 下载PDF
地震多属性RGBA颜色融合技术的应用研究 被引量:39
2
作者 丁峰 年永吉 +2 位作者 王治国 尹成 古发明 《石油物探》 EI CSCD 北大核心 2010年第3期248-252,共5页
利用数学工具和计算机图形能力将众多的地震属性映射为低维数的数据进行解释,可以提高地震属性分析的效率。地震多属性PCA-RGBA颜色融合技术是一种基于视觉的属性分析方法,其原理是,将多个地震属性通过主成分分析(PCA)技术进行降维,并... 利用数学工具和计算机图形能力将众多的地震属性映射为低维数的数据进行解释,可以提高地震属性分析的效率。地震多属性PCA-RGBA颜色融合技术是一种基于视觉的属性分析方法,其原理是,将多个地震属性通过主成分分析(PCA)技术进行降维,并将主分量按特征值由大到小排序,取前3个(或4个)主分量利用RGBA(Red-Green-Blue-Alpha)颜色融合原理获得一张融合图;再结合实际地质资料,在融合图像上依据颜色的区域性和突变异常等视觉特征,进行地质目标解释。在渤海SZ油田,应用该方法对常规地震属性数据进行了处理,在辅助断层识别、油藏流体时移变化区域判定等方面获得了良好的效果。 展开更多
关键词 多属性分析 成分分析技术 颜色融合技术 主成分分量 断层识别 油藏时移特征分析
在线阅读 下载PDF
海相沉积粉质中间土的物理状态 被引量:9
3
作者 石名磊 刘建华 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第6期935-939,共5页
长江河口地区通启高速公路工程地质研究发现,该区域广泛分布海相粉质中间土,其液性指数与一般海相软粘土相似,具有较高的原位强度、较低的塑性和显著的结构性,而其粒度分布、强度特性、压缩性和塑性图与海相软粘土明显不同.采用主成分... 长江河口地区通启高速公路工程地质研究发现,该区域广泛分布海相粉质中间土,其液性指数与一般海相软粘土相似,具有较高的原位强度、较低的塑性和显著的结构性,而其粒度分布、强度特性、压缩性和塑性图与海相软粘土明显不同.采用主成分与主分量分析,对海相粉质中间土的多指标反映其土性信息的能力进行了分析.分析结果表明,采用液性指数划分其稠度的传统方法不尽合理,而采用F孔隙函数确定其物理状态更加合理.根据物理状态指标与工程力学特性的相关性,建立孔隙函数划分中间土物理状态新方法.通启高速公路工程实践表明,海相粉质中间土具有良好的力学特性,不应隶属于软粘土地基. 展开更多
关键词 天然沉积海相土 成分分量分析 孔隙函数 液性指数 稠度
在线阅读 下载PDF
Application of SVM and PCA-CS algorithms for prediction of strip crown in hot strip rolling 被引量:16
4
作者 JI Ya-feng SONG Le-bao +3 位作者 SUN Jie PENG Wen LI Hua-ying MA Li-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2333-2344,共12页
To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance... To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling. 展开更多
关键词 strip crown support vector machine principal component analysis cuckoo search algorithm particle swarm optimization algorithm
在线阅读 下载PDF
Modeling and monitoring of nonlinear multi-mode processes based on similarity measure-KPCA 被引量:10
5
作者 WANG Xiao-gang HUANG Li-wei ZHANG Ying-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期665-674,共10页
A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,wher... A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method. 展开更多
关键词 process monitoring kernel principal component analysis (KPCA) similarity measure subspace separation
在线阅读 下载PDF
Predicting configuration performance of modular product family using principal component analysis and support vector machine 被引量:1
6
作者 张萌 李国喜 +1 位作者 龚京忠 吴宝中 《Journal of Central South University》 SCIE EI CAS 2014年第7期2701-2711,共11页
A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a n... A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a newly configured product through soft computing technique instead of practical test experiments,which helps to evaluate whether or not the product variant can satisfy the customers' individual requirements.The PCA technique was used to reduce and orthogonalize the module parameters that affect the product performance.Then,these extracted features were used as new input variables in SVM model to mine knowledge from the limited existing product data.The performance values of a newly configured product can be predicted by means of the trained SVM models.This PCA-SVM method can ensure that the performance prediction is executed rapidly and accurately,even under the small sample conditions.The applicability of the proposed method was verified on a family of plate electrostatic precipitators. 展开更多
关键词 design configuration performance prediction MODULARITY principal component analysis support vector machine
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部