针对径向基函数(Radial Basis Function,RBF)神经网络算法在无线网络室内定位中拓扑结构和网络参数难以确定,其定位效果不理想的问题,提出了一种用核主成分分析的模糊C均值聚类算法(Fuzzy C-Means clustering algorithm based on Kernel...针对径向基函数(Radial Basis Function,RBF)神经网络算法在无线网络室内定位中拓扑结构和网络参数难以确定,其定位效果不理想的问题,提出了一种用核主成分分析的模糊C均值聚类算法(Fuzzy C-Means clustering algorithm based on Kernel Principal Component Analysis,KPCA-FCM)和模拟退火自适应遗传算法(Simulated Annealing adaptive Genetic Algorithm,SAGA)优化RBF神经网络的无线室内定位算法。首先利用KPCA对原始训练数据样本进行数据预处理,再通过KPCA-FCM算法计算出最优聚类数目和聚类中心点;其次将聚类数目和聚类中心点作为隐含层神经元个数和中心值,创建RBF神经网络,并将其网络参数映射到SAGA算法中;再次由SAGA算法进行网络参数寻优,把最优的解映射回RBF神经网络;最后利用样本数据对RBF神经网络进行训练和测试,完成建立RBF神经网络算法模型。实验表明,在相同的环境中,所提算法比传统RBF神经网络定位精度提高了48.41%。展开更多
为应对分布式光伏电站接入电网所带来的能量波动问题,方便电网部门的能量调度和管理,提出一种基于模糊C均值聚类和样本加权的反向传播(fuzzy C means-clustering and weighted samples back propagation, FCM-WS-BP)神经网络光伏输出功...为应对分布式光伏电站接入电网所带来的能量波动问题,方便电网部门的能量调度和管理,提出一种基于模糊C均值聚类和样本加权的反向传播(fuzzy C means-clustering and weighted samples back propagation, FCM-WS-BP)神经网络光伏输出功率预测方法。首先,采用最大互信息相关性分析和主成分分析法,从气象数据中提取出综合气象因子。基于综合气象因子的频域特征,利用模糊C均值聚类将历史样本划分为不同的天气类型,再利用所得到的隶属度矩阵对样本加权。然后,利用加权后的样本对反向传播(back propagation,BP)神经网络进行训练,得到FCM-WS-BP预测模型。最后,经实验验证,所提方法与BP模型相比,预测结果具有更高的准确性,模型预测性能较好。展开更多
文摘为应对分布式光伏电站接入电网所带来的能量波动问题,方便电网部门的能量调度和管理,提出一种基于模糊C均值聚类和样本加权的反向传播(fuzzy C means-clustering and weighted samples back propagation, FCM-WS-BP)神经网络光伏输出功率预测方法。首先,采用最大互信息相关性分析和主成分分析法,从气象数据中提取出综合气象因子。基于综合气象因子的频域特征,利用模糊C均值聚类将历史样本划分为不同的天气类型,再利用所得到的隶属度矩阵对样本加权。然后,利用加权后的样本对反向传播(back propagation,BP)神经网络进行训练,得到FCM-WS-BP预测模型。最后,经实验验证,所提方法与BP模型相比,预测结果具有更高的准确性,模型预测性能较好。