期刊文献+
共找到1,509篇文章
< 1 2 76 >
每页显示 20 50 100
基于主成分分析和神经网络聚类的城市坡道行驶工况研究
1
作者 宋宇臻 吴智敏 +2 位作者 阴晓峰 雷雨龙 梁益铭 《汽车技术》 北大核心 2025年第5期47-54,共8页
针对车用性能评价的城市行驶工况缺乏坡道信息的问题,提出了一种基于自组织映射(SOM)神经网络的城市坡道行驶工况构建方法。采用平均车流法采集具有城市坡道特征的典型道路行驶基础数据,将预处理后数据划分短行程,选取20个表征道路运行... 针对车用性能评价的城市行驶工况缺乏坡道信息的问题,提出了一种基于自组织映射(SOM)神经网络的城市坡道行驶工况构建方法。采用平均车流法采集具有城市坡道特征的典型道路行驶基础数据,将预处理后数据划分短行程,选取20个表征道路运行特征的短行程特征参数;利用主成分分析法对特征参数降维,使用SOM神经网络对短行程进行聚类分析;基于坡道平滑衔接的原则,选取相关度较高的短行程,并构建包含速度、坡度信息的城市坡道行驶工况。自动变速器坡道性能测试结果表明:所构建工况能够体现车辆在具有城市坡道特征道路的行驶特性,可作为车辆城市坡道行驶性能测试的基准工况。 展开更多
关键词 坡道行驶工况 成分分析 SOM神经网络 聚类分析 性能测试
在线阅读 下载PDF
基于主成分分析-BP神经网络的风电备件需求预测 被引量:12
2
作者 李晓娟 张芳媛 喻玲 《科学技术与工程》 北大核心 2024年第1期281-288,共8页
风电机组具有结构复杂,运维困难,且长期处于恶劣的工作环境的特点。风电备件的需求预测有助于为风电场配备最合适的备件数,以确保风电场的平稳、高效运行。构建主成分分析-反向传播(principal component analysis-back propagation,PCA-... 风电机组具有结构复杂,运维困难,且长期处于恶劣的工作环境的特点。风电备件的需求预测有助于为风电场配备最合适的备件数,以确保风电场的平稳、高效运行。构建主成分分析-反向传播(principal component analysis-back propagation,PCA-BP)模型,针对受多因素影响的复杂备件,先利用PCA将影响风电备件的要素进行筛选,再利用BP神经网络算法,得到最为精确的预测结果。比较自回归积分滑动平均(autoregressive integrated moving average,ARIMA)模型、BP神经网络预测和PCA-BP神经网络预测的结果。结果表明:PCA能显著降低神经网络预测误差,预测的精度为93.94%,高于BP神经网络预测的88.39%和ARIMA模型的85.31%,所以PCA-BP神经网络模型的预测精度准确且有可靠结果,能够适用于风机备件的需求预测。 展开更多
关键词 成分分析 神经网络 风电备件 需求预测
在线阅读 下载PDF
PCA-BP神经网络模型在拖拉机发动机故障诊断中的应用
3
作者 杨健 《农机化研究》 北大核心 2025年第3期254-258,共5页
拖拉机发动机故障诊断是指通过对拖拉机发动机的运行状态、传感器数据等信息进行分析和处理,识别出发动机故障的类型和位置,及时准确地诊断拖拉机发动机故障,对于提高农机装备的使用效率和经济效益具有重要的意义。为此,基于主成分分析(... 拖拉机发动机故障诊断是指通过对拖拉机发动机的运行状态、传感器数据等信息进行分析和处理,识别出发动机故障的类型和位置,及时准确地诊断拖拉机发动机故障,对于提高农机装备的使用效率和经济效益具有重要的意义。为此,基于主成分分析(PCA)算法对拖拉机发动机的传感器数据进行降维处理,并使用BP神经网络对降维后的数据进行分类识别,以实现拖拉机发动机故障的诊断。试验结果表明:PCA-BP神经网络模型可以准确地诊断拖拉机发动机的多种故障,相比于传统的BP神经网络模型,具有更高的准确率和更好的泛化能力,表明PCA-BP神经网络模型在拖拉机发动机故障诊断中具有较大的应用前景。 展开更多
关键词 拖拉机发动机 故障诊断 成分分析 BP神经网络
在线阅读 下载PDF
基于主成分自组织神经网络法的测井曲线分层技术 被引量:2
4
作者 张强 胡志伟 +1 位作者 王毛毛 周成号 《地质与勘探》 CAS CSCD 北大核心 2024年第5期1013-1020,共8页
在砂岩型铀矿找矿工作中,提高测井岩性分层效率和精度至关重要。为提高砂岩型铀矿岩性分层效果,本文采用主成分分析法对多个测井曲线进行降维处理,将主成分分析法的第一主成分、第二主成分、第三主成分作为自组织神经网络的样本数据,进... 在砂岩型铀矿找矿工作中,提高测井岩性分层效率和精度至关重要。为提高砂岩型铀矿岩性分层效果,本文采用主成分分析法对多个测井曲线进行降维处理,将主成分分析法的第一主成分、第二主成分、第三主成分作为自组织神经网络的样本数据,进行自组织神经网络训练,将训练好的网络模型用于砂岩型铀矿岩性的自动化分层。实验结果显示:主成分自组织神经网络法岩性分层精度可达到85%以上,高于传统自组织神经网络算法78%的分层精度,具有更好的测井岩性分层效果。因此,主成分自组织神经网算法的岩性分层方法有效减少了输入样本的种类,简化了自组织神经网络结构,其自动化分层效果要优于传统的自组织神经网络算法。本文的研究结果表明,主成分自组织神经网算法在砂岩型铀矿领域岩性识别工作中具有较好的应用效果。 展开更多
关键词 测井曲线 自组织神经网络算法 成分分析 岩性分层 砂岩型铀矿
在线阅读 下载PDF
基于粗糙集理论-主成分分析的Elman神经网络短期风速预测 被引量:31
5
作者 尹东阳 盛义发 +2 位作者 蒋明洁 李永胜 谢曲天 《电力系统保护与控制》 EI CSCD 北大核心 2014年第11期46-51,共6页
为了解决传统静态前馈神经网络(FNN)在短期风速预测中易陷入局部最优值及动态性能的不足,引入Elman动态神经网络建立风速预测模型,采用主成分分析法(PCA)对原始风速数据进行特征提取以优化神经网络的输入,改进激励函数和网络结构以寻求... 为了解决传统静态前馈神经网络(FNN)在短期风速预测中易陷入局部最优值及动态性能的不足,引入Elman动态神经网络建立风速预测模型,采用主成分分析法(PCA)对原始风速数据进行特征提取以优化神经网络的输入,改进激励函数和网络结构以寻求函数收敛速度和预测精度的最优解。针对Elman神经网络预测模型在风速波动的峰值处预测误差较大及预测精度存在波动性,提出采用粗糙值理论对模型预测值进行修正与补偿,进一步提高预测精度。实验证明:所提出的方法能有效提高预测精度,增强神经网络模型的泛化能力,具有较好的实用性。 展开更多
关键词 风速预测 ELMAN神经网络 成分分析 粗糙集理论 预测值修正 principal components analysis (PCA)
在线阅读 下载PDF
高性能混凝土强度预测的神经网络-主成分分析 被引量:13
6
作者 梁宾桥 王继宗 梁晓颖 《计算机工程与应用》 CSCD 北大核心 2004年第18期192-195,共4页
在误差逆传播算法神经网络预测模型数据前处理中,对样本集优化,采用多元统计分析中的主成分分析法,提取影响粉煤灰高性能混凝土抗压强度的主要因素,消除影响因素间的线性相关性。研究结果表明,用该方法处理后的样本数据输入神经网络,提... 在误差逆传播算法神经网络预测模型数据前处理中,对样本集优化,采用多元统计分析中的主成分分析法,提取影响粉煤灰高性能混凝土抗压强度的主要因素,消除影响因素间的线性相关性。研究结果表明,用该方法处理后的样本数据输入神经网络,提高了预测效率,训练时间减少,预测精度也有一定程度的提高,网络结构得到简化。 展开更多
关键词 混凝土抗压强度 多元统计分析 成分分析 人工神经网络
在线阅读 下载PDF
近红外光谱柑橘货架期的快速鉴别模型--基于主成分分析神经网络 被引量:9
7
作者 刘辉军 李文军 +1 位作者 吕进 吴向峰 《农机化研究》 北大核心 2009年第5期174-176,179,共4页
利用近红外光谱技术进行了柑橘货架期的快速鉴别模型的研究。在两个不同的时间采集从市场上购买的黄岩地区的32个柑橘(同一时间采摘)的近红外光谱,并将不同时间采集光谱时的柑橘的货架期分别定为1类和2类(间隔为10天),对不同货架期的柑... 利用近红外光谱技术进行了柑橘货架期的快速鉴别模型的研究。在两个不同的时间采集从市场上购买的黄岩地区的32个柑橘(同一时间采摘)的近红外光谱,并将不同时间采集光谱时的柑橘的货架期分别定为1类和2类(间隔为10天),对不同货架期的柑橘样品光谱进行主成分特征提取,将提取的特征变量作为神经网络的输入,建立了基于主成分和神经网络的近红外光谱柑橘货架期的快速鉴别模型。所建模型对1类中7个样品货架期的鉴别结果中有4个样品的货架期预测准确率在90%以上;对2类中8个样品货架期的鉴别结果准确率均在90%以上。结果表明,近红外光谱技术可以很好地进行柑橘类水果的货架期的快速鉴别。 展开更多
关键词 近红外光谱 成分分析 径向神经网络 柑橘 货架期
在线阅读 下载PDF
应用遗传算法-主成分分析-反向传播神经网络的近红外光谱识别树种效果 被引量:6
8
作者 冯国红 朱玉杰 +1 位作者 徐华东 蒋天宁 《东北林业大学学报》 CAS CSCD 北大核心 2020年第6期56-60,共5页
以风车木(Conbretum imberbe)和非洲小叶紫檀(Pterocarpus tinctorius Welw)为研究对象,应用LabSpec光谱仪采集光谱样本进行主成分分析(PCA),并运用遗传算法(GA)对主成分进行寻优,分别以未经GA寻优的主成分和经GA寻优的主成分作为反向传... 以风车木(Conbretum imberbe)和非洲小叶紫檀(Pterocarpus tinctorius Welw)为研究对象,应用LabSpec光谱仪采集光谱样本进行主成分分析(PCA),并运用遗传算法(GA)对主成分进行寻优,分别以未经GA寻优的主成分和经GA寻优的主成分作为反向传播(BP)神经网络输入量,测试了BP神经网络识别两种树种的效果。结果表明:寻优前,获得高识别率的主成分区间较窄,仅有5种情况识别效果理想,此种情况不利于主成分数的恰当选择;寻优后,获得高识别率的主成分区间较宽,从前6到前17有12种情况可供选择,此种情况更利于主成分的合理选择;寻优后的识别率比寻优前高,且稳定性较好。利用近红外光谱,依据GA-PCA-BP神经网络方法识别树种是一种理想的方法。 展开更多
关键词 树种识别 近红外光谱 遗传算法 成分分析 反向传播神经网络
在线阅读 下载PDF
有机磷农药构效关系的主成分分析-人工神经网络研究 被引量:4
9
作者 金伟 黄卫红 陆晓华 《分析科学学报》 CAS CSCD 北大核心 2002年第6期449-452,共4页
采用主成分分析法对样本数据集进行预处理 ,将得到的新的样本数据集输入人工神经网络 ,对有机磷农药的毒性参数进行预报。研究结果表明 ,主成分分析 -人工神经网络的预报精度优于单纯的人工神经网络。
关键词 成分分析 人工神经网络 有机磷农药 构效关系 QSAR
在线阅读 下载PDF
基于主成分分析L-M神经网络高峰负荷预测研究 被引量:9
10
作者 柳进 唐降龙 《继电器》 CSCD 北大核心 2004年第13期24-27,共4页
在论述电网高峰负荷预测重要性和特点的基础上,将高峰负荷样本,按节气工作日和节假日样本进行聚类,从输入空间入手,采用主成分分析法,减少输入向量的维数,并保留原来输入向量的有用信息,再利用L-M优化算法的多层神经网络预测模型对辽宁... 在论述电网高峰负荷预测重要性和特点的基础上,将高峰负荷样本,按节气工作日和节假日样本进行聚类,从输入空间入手,采用主成分分析法,减少输入向量的维数,并保留原来输入向量的有用信息,再利用L-M优化算法的多层神经网络预测模型对辽宁电网高峰负荷进行了模拟预测,预测精度令人满意。 展开更多
关键词 电力系统 电网 负荷预测 成分分析 L-M神经网络
在线阅读 下载PDF
基于二维主成分分析与卷积神经网络的手写体汉字识别 被引量:10
11
作者 郑延斌 韩梦云 樊文鑫 《计算机应用》 CSCD 北大核心 2020年第8期2465-2471,共7页
随着计算能力的飞速增长、训练数据的不断积累以及非线性激活函数的不断完善,卷积神经网络(CNN)在手写体汉字识别中表现出较好的识别性能。针对CNN识别手写体汉字识别速度慢的问题,将二维主成分分析(2DPCA)与CNN相结合识别手写体汉字。... 随着计算能力的飞速增长、训练数据的不断积累以及非线性激活函数的不断完善,卷积神经网络(CNN)在手写体汉字识别中表现出较好的识别性能。针对CNN识别手写体汉字识别速度慢的问题,将二维主成分分析(2DPCA)与CNN相结合识别手写体汉字。首先,利用2DPCA提取手写体汉字的投影特征向量;然后,将得到的投影特征向量组成特征矩阵;其次,用组成的特征矩阵作为CNN的输入;最后,用Softmax函数进行分类。与基于AlexNet的CNN模型相比,所提方法的运行时间降低了78%,与基于ACNN与DCNN的模型相比,所提方法的运行时间分别降低了80%与73%。实验结果表明,该方法在不降低识别精度的同时,可以减少识别手写体汉字的运行时间。 展开更多
关键词 手写体汉字识别 深度学习 卷积神经网络 二维成分分析 图像分类
在线阅读 下载PDF
主成分分析法-BP神经网络算法用于电位滴定法测定有机酸 被引量:1
12
作者 陆建平 李郁 曹家兴 《理化检验(化学分册)》 CAS CSCD 北大核心 2011年第5期505-507,共3页
采用电位滴定法测定混合液中3种以上的多元弱酸,主成分分析法处理了电位滴定的曲线数据,用BP神经网络进行有机酸预测计算。建立了滴定时滴定剂和混合液中有机酸浓度之间关系的模型,实现了不经分离直接测定溶液中几种小分子多元弱酸。结... 采用电位滴定法测定混合液中3种以上的多元弱酸,主成分分析法处理了电位滴定的曲线数据,用BP神经网络进行有机酸预测计算。建立了滴定时滴定剂和混合液中有机酸浓度之间关系的模型,实现了不经分离直接测定溶液中几种小分子多元弱酸。结果表明:该神经网络计算出有机酸的预测值与实际值相对误差不大于5.0%。 展开更多
关键词 电位滴定法 小分子有机酸 成分分析 BP神经网络
在线阅读 下载PDF
融合注意力机制和卷积神经网络的电网暂态电压稳定评估及可解释性分析 被引量:2
13
作者 张哲 秦博宇 +2 位作者 高鑫 丁涛 张逸兴 《电网技术》 EI CSCD 北大核心 2024年第11期4648-4657,I0057,I0056,共12页
提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention mo... 提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention module,CB AM)提升传统CNN的特征捕获能力,考虑模型特性和网络结构设计CBAMCNN组合模块。其次,建立基于CBAM-CNN的电网暂态电压稳定评估模型,揭示运行工况多变场景下系统关键电气量和稳定状态之间的映射关系。最后,基于沙普利值加性解释(Shapley additive explanations,SHAP)理论提出数据驱动模型评估结果的可解释性分析框架,提炼影响样本稳定状态的主导特征,评估各输入特征量对模型输出结果的贡献程度。在典型受端电网仿真系统中验证了所提稳定评估方法的准确性和可解释性分析方法的有效性。 展开更多
关键词 卷积块注意力模块-卷积神经网络 暂态电压稳定评估 沙普利值加性解释理论 可解释性分析
在线阅读 下载PDF
基于主成分分析与神经网络的采矿方法优选 被引量:96
14
作者 陈建宏 刘浪 +1 位作者 周智勇 永学艳 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第5期1967-1972,共6页
基于利用神经网络预测采矿方法存在一些不足,建立主成分分析法与神经网络结合的采矿方法优选模型。对神经网络的输入数据进行主成分分析,使输入数据不相关且减少。研究结果表明:利用主成分分析法可将输入数据减少,消除由于BP网络输入数... 基于利用神经网络预测采矿方法存在一些不足,建立主成分分析法与神经网络结合的采矿方法优选模型。对神经网络的输入数据进行主成分分析,使输入数据不相关且减少。研究结果表明:利用主成分分析法可将输入数据减少,消除由于BP网络输入数据太多而影响数据处理速度的缺陷;把主成分分析法和神经网络结合进行采矿方法优选,可使预测精度大大提高。 展开更多
关键词 采矿方法 成分分析 BP神经网络
在线阅读 下载PDF
基于主成分分析与前向反馈传播神经网络的风电场输出功率预测 被引量:25
15
作者 张明理 杨晓亮 +2 位作者 滕云 徐建源 林莘 《电网技术》 EI CSCD 北大核心 2011年第3期183-187,共5页
为了解决单一的传统预测方法在风电场输出功率预测中存在的问题,提出了基于主成分前向反馈神经网络的预测方法。首先采用K-S方法对样本进行选取;然后用主成分分析法提取样本有效信息,求解出主成分,构建神经网络模型进行输出功率预测。... 为了解决单一的传统预测方法在风电场输出功率预测中存在的问题,提出了基于主成分前向反馈神经网络的预测方法。首先采用K-S方法对样本进行选取;然后用主成分分析法提取样本有效信息,求解出主成分,构建神经网络模型进行输出功率预测。结果表明,主成分分析后的神经网络模型消除了输入因子的相关性并简化了网络结构,使网络加速收敛。实例验证,与单一的神经网络模型相比,预测精度有所提高,为风电场输出功率预测提供了一种有效的方法。 展开更多
关键词 风电场 功率预测 成分分析 BP神经网络
在线阅读 下载PDF
基于主成分分析和人工神经网络的激光诱导击穿光谱塑料分类识别方法研究 被引量:36
16
作者 王茜蒨 黄志文 +2 位作者 刘凯 李文江 阎吉祥 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第12期3179-3182,共4页
研究了人工神经网络在激光诱导击穿光谱(LIBS)塑料分类识别方面的应用。选用七种常见的塑料作为实验样品,获得每种样品的170组LIBS光谱数据,利用主成分分析获得前五个主成分的得分矩阵。用每种塑料样品的130组光谱数据的主成分得分矩阵... 研究了人工神经网络在激光诱导击穿光谱(LIBS)塑料分类识别方面的应用。选用七种常见的塑料作为实验样品,获得每种样品的170组LIBS光谱数据,利用主成分分析获得前五个主成分的得分矩阵。用每种塑料样品的130组光谱数据的主成分得分矩阵作为训练集,建立反向传播(BP)人工神经网络模型。将其余40组主成分得分作为测试数据输入训练好的模型进行分类识别,其识别准确度达到97.5%。实验结果表明,通过采用主成分分析与BP人工神经网络相结合的方法,可以很好地进行塑料激光诱导击穿光谱的分类识别,对塑料的回收利用有重要价值。 展开更多
关键词 激光诱导击穿光谱 塑料 成分分析 BP人工神经网络 分类识别
在线阅读 下载PDF
基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究 被引量:149
17
作者 何勇 李晓丽 邵咏妮 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2006年第5期850-853,共4页
提出了一种用近红外光谱技术快速鉴别苹果品种的新方法,首先用主成分分析法对苹果品种进行聚类分析并获取苹果的近红外指纹图谱,再结合人工神经网络技术进行品种鉴别。主成分分析表明,主成分1和主成分2的累积可信度已达98%,以主成分1和... 提出了一种用近红外光谱技术快速鉴别苹果品种的新方法,首先用主成分分析法对苹果品种进行聚类分析并获取苹果的近红外指纹图谱,再结合人工神经网络技术进行品种鉴别。主成分分析表明,主成分1和主成分2的累积可信度已达98%,以主成分1和2对所有建模样本的得分值做出的得分图,对不同种类苹果具有很好的聚类作用。利用主成分分析得到的载荷图可以得到对于苹果品种敏感的特征波段,用特征波段图谱作为神经网络的输入建立三层BP人工神经网络模型。每个品种各25个苹果共75个用来建立神经网络模型,余下的共15个用于预测。对未知的15个样本进行预测,品种识别准确率达到100%。说明文章提出的方法具有很好的分类和鉴别作用,为苹果的品种鉴别提供了一种新方法。 展开更多
关键词 近红外光谱 苹果 成分分析 人工神经网络 聚类
在线阅读 下载PDF
主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧 被引量:70
18
作者 陈英义 程倩倩 +2 位作者 方晓敏 于辉辉 李道亮 《农业工程学报》 EI CAS CSCD 北大核心 2018年第17期183-191,共9页
为了提高水产养殖溶解氧预测的精度,提出了基于主成分分析(principal component analysis,PCA)和长短时记忆神经网络(long short-term memory,LSTM)的水产养殖溶解氧预测模型。首先通过主成分分析提取水产养殖溶解氧的关键影响因子,消... 为了提高水产养殖溶解氧预测的精度,提出了基于主成分分析(principal component analysis,PCA)和长短时记忆神经网络(long short-term memory,LSTM)的水产养殖溶解氧预测模型。首先通过主成分分析提取水产养殖溶解氧的关键影响因子,消除了原始变量之间的相关性,降低了模型输入向量维度;然后,在Tensorflow深度学习框架的基础上建立LSTM神经网络的水产养殖溶解氧预测模型;最后,利用该模型对浙江省淡水水产养殖研究所综合实验基地某池塘溶解氧进行验证。试验结果表明:该模型与BP神经网络等其他浅层模型相比,模型评价指标平均绝对误差、均方根误差和平均绝对误差分别为0.274、0.089和0.147,均优于传统的预测方法;该模型具有良好的预测性能和泛化能力,能够满足水产养殖溶解氧精确预测的实际需要,可以为水产养殖水质精准调控提供参考。 展开更多
关键词 水产养殖 溶解氧预测 成分分析 LSTM神经网络 循环神经网络
在线阅读 下载PDF
近红外光谱结合主成分分析和BP神经网络的转基因大豆无损鉴别研究 被引量:28
19
作者 吴江 黄富荣 +2 位作者 黄才欢 张军 陈星旦 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第6期1537-1541,共5页
为探究无损鉴别转基因大豆的可行性,利用近红外光谱分析仪对大豆扫描得到反射光谱,应用主成分分析结合BP神经网络方法进行分析鉴别。首先应用主成分分析法,得到包含大豆99.03%的光谱信息的6个主成分,再将其作为BP神经网络的输入,对应的... 为探究无损鉴别转基因大豆的可行性,利用近红外光谱分析仪对大豆扫描得到反射光谱,应用主成分分析结合BP神经网络方法进行分析鉴别。首先应用主成分分析法,得到包含大豆99.03%的光谱信息的6个主成分,再将其作为BP神经网络的输入,对应的大豆种类作为输出,建立一个三层BP神经网络模型。该模型对于转基因大豆的正确识别率为100%,说明近红外光谱结合主成分分析和BP神经网络的方法能无损快速准确地鉴别转基因大豆。 展开更多
关键词 近红外光谱 转基因大豆 成分分析 BP神经网络
在线阅读 下载PDF
基于主成分分析和遗传优化BP神经网络的光伏输出功率短期预测 被引量:42
20
作者 许童羽 马艺铭 +2 位作者 曹英丽 唐瑞 陈俊杰 《电力系统保护与控制》 EI CSCD 北大核心 2016年第22期90-95,共6页
针对光伏系统输出功率的波动性和间歇性特点,提出一种基于主成分分析(PCA)和遗传算法(GA)优化的BP神经网络功率短期预测方法。通过历史功率数据和实时气象因素对输出功率进行直接预测,利用主成分分析法将多个原始变量降维成少数彼此独... 针对光伏系统输出功率的波动性和间歇性特点,提出一种基于主成分分析(PCA)和遗传算法(GA)优化的BP神经网络功率短期预测方法。通过历史功率数据和实时气象因素对输出功率进行直接预测,利用主成分分析法将多个原始变量降维成少数彼此独立的变量,作为神经网络的输入。同时利用遗传算法的全局搜索特性在解空间中定位一个较好的空间,优化BP的初始权值阈值,克服了传统BP神经网络易陷入局部极小点、学习收敛速度慢的问题。通过建立不同预测模型进行对比,验证了所提算法和模型的有效性。 展开更多
关键词 成分分析 遗传算法 功率预测 BP神经网络 光伏系统
在线阅读 下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部