期刊文献+
共找到1,199篇文章
< 1 2 60 >
每页显示 20 50 100
基于主成分分析和神经网络聚类的城市坡道行驶工况研究 被引量:1
1
作者 宋宇臻 吴智敏 +2 位作者 阴晓峰 雷雨龙 梁益铭 《汽车技术》 北大核心 2025年第5期47-54,共8页
针对车用性能评价的城市行驶工况缺乏坡道信息的问题,提出了一种基于自组织映射(SOM)神经网络的城市坡道行驶工况构建方法。采用平均车流法采集具有城市坡道特征的典型道路行驶基础数据,将预处理后数据划分短行程,选取20个表征道路运行... 针对车用性能评价的城市行驶工况缺乏坡道信息的问题,提出了一种基于自组织映射(SOM)神经网络的城市坡道行驶工况构建方法。采用平均车流法采集具有城市坡道特征的典型道路行驶基础数据,将预处理后数据划分短行程,选取20个表征道路运行特征的短行程特征参数;利用主成分分析法对特征参数降维,使用SOM神经网络对短行程进行聚类分析;基于坡道平滑衔接的原则,选取相关度较高的短行程,并构建包含速度、坡度信息的城市坡道行驶工况。自动变速器坡道性能测试结果表明:所构建工况能够体现车辆在具有城市坡道特征道路的行驶特性,可作为车辆城市坡道行驶性能测试的基准工况。 展开更多
关键词 坡道行驶工况 成分分析 SOM神经网络 聚类分析 性能测试
在线阅读 下载PDF
基于主成分分析-BP神经网络的风电备件需求预测 被引量:14
2
作者 李晓娟 张芳媛 喻玲 《科学技术与工程》 北大核心 2024年第1期281-288,共8页
风电机组具有结构复杂,运维困难,且长期处于恶劣的工作环境的特点。风电备件的需求预测有助于为风电场配备最合适的备件数,以确保风电场的平稳、高效运行。构建主成分分析-反向传播(principal component analysis-back propagation,PCA-... 风电机组具有结构复杂,运维困难,且长期处于恶劣的工作环境的特点。风电备件的需求预测有助于为风电场配备最合适的备件数,以确保风电场的平稳、高效运行。构建主成分分析-反向传播(principal component analysis-back propagation,PCA-BP)模型,针对受多因素影响的复杂备件,先利用PCA将影响风电备件的要素进行筛选,再利用BP神经网络算法,得到最为精确的预测结果。比较自回归积分滑动平均(autoregressive integrated moving average,ARIMA)模型、BP神经网络预测和PCA-BP神经网络预测的结果。结果表明:PCA能显著降低神经网络预测误差,预测的精度为93.94%,高于BP神经网络预测的88.39%和ARIMA模型的85.31%,所以PCA-BP神经网络模型的预测精度准确且有可靠结果,能够适用于风机备件的需求预测。 展开更多
关键词 成分分析 神经网络 风电备件 需求预测
在线阅读 下载PDF
船舶冲击环境网络预报的参数主成分分析方法 被引量:1
3
作者 赵晓俊 郭君 +1 位作者 杨俊杰 赵华讯 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第9期1655-1661,共7页
针对由于船舶水下爆炸冲击的强非线性特征引起的在利用神经网络进行冲击环境预报时精度不高的问题,本文采用一种基于主成分分析的方法对网络模型的输入参数作降维处理从而提高精度。利用矩阵特征值提取和矩阵变换,通过主成分分析方法以... 针对由于船舶水下爆炸冲击的强非线性特征引起的在利用神经网络进行冲击环境预报时精度不高的问题,本文采用一种基于主成分分析的方法对网络模型的输入参数作降维处理从而提高精度。利用矩阵特征值提取和矩阵变换,通过主成分分析方法以及因子分析对原始数据样本进行数据降维处理,再选择适应的网络对冲击谱值进行快速预报。实验结果表明:主成分选取主要参考特征值的大小及下降趋势,保留陡降段的特征值,并分析过渡段特征值的取舍;同时验证了对参数实施去相关处理和降维处理可以明显改善神经网络的预报准确性。 展开更多
关键词 参数降维 矩阵变换 因子分析 成分 神经网络 水下爆炸 冲击环境 快速预报
在线阅读 下载PDF
基于核主成分分析与长短时记忆网络的水电机组监测预警
4
作者 王勇飞 李晓飞 +3 位作者 孙雨欣 张健 郭鹏程 王仁本 《振动与冲击》 EI CSCD 北大核心 2024年第24期287-294,共8页
水电机组的可靠稳定运行对于区域电力系统安全极为重要,该文提出了一种基于核主成分分析(kernel principal component analysis, KPCA)和长短时记忆网络(long short-term memory, LSTM)的水电机组智能预警方法。开展水电机组多通道振动... 水电机组的可靠稳定运行对于区域电力系统安全极为重要,该文提出了一种基于核主成分分析(kernel principal component analysis, KPCA)和长短时记忆网络(long short-term memory, LSTM)的水电机组智能预警方法。开展水电机组多通道振动信号数据融合研究,通过KPCA方法去除了多通道信号间冗余,实现了原始数据的压缩表征,并获得了机组在稳态运行工况的T2(Hotelling’s Fsquared)和SPE(square prediction error)控制限,将其作为预警阈值对融合后信号进行异常状态识别。以LSTM为基础构建了时序预测模型,结合异常状态识别结果实现了水电机组状态预警功能。研究通过案例实施验证了所提方法的有效性,并与KPCA-RNN和KPCA-Informer等模型进行了对比,所提出KPCA-LSTM模型预测结果的R2系数大于0.97,预测偏差处于极低水平,性能优于对比模型。 展开更多
关键词 水电机组 长短时记忆网络(LSTM) 成分分析(KPCA) 预警阈值
在线阅读 下载PDF
基于主成分自组织神经网络法的测井曲线分层技术 被引量:3
5
作者 张强 胡志伟 +1 位作者 王毛毛 周成号 《地质与勘探》 CAS CSCD 北大核心 2024年第5期1013-1020,共8页
在砂岩型铀矿找矿工作中,提高测井岩性分层效率和精度至关重要。为提高砂岩型铀矿岩性分层效果,本文采用主成分分析法对多个测井曲线进行降维处理,将主成分分析法的第一主成分、第二主成分、第三主成分作为自组织神经网络的样本数据,进... 在砂岩型铀矿找矿工作中,提高测井岩性分层效率和精度至关重要。为提高砂岩型铀矿岩性分层效果,本文采用主成分分析法对多个测井曲线进行降维处理,将主成分分析法的第一主成分、第二主成分、第三主成分作为自组织神经网络的样本数据,进行自组织神经网络训练,将训练好的网络模型用于砂岩型铀矿岩性的自动化分层。实验结果显示:主成分自组织神经网络法岩性分层精度可达到85%以上,高于传统自组织神经网络算法78%的分层精度,具有更好的测井岩性分层效果。因此,主成分自组织神经网算法的岩性分层方法有效减少了输入样本的种类,简化了自组织神经网络结构,其自动化分层效果要优于传统的自组织神经网络算法。本文的研究结果表明,主成分自组织神经网算法在砂岩型铀矿领域岩性识别工作中具有较好的应用效果。 展开更多
关键词 测井曲线 自组织神经网络算法 成分分析 岩性分层 砂岩型铀矿
在线阅读 下载PDF
基于多尺度主成分分析的全网络异常检测方法 被引量:43
6
作者 钱叶魁 陈鸣 +3 位作者 叶立新 刘凤荣 朱少卫 张晗 《软件学报》 EI CSCD 北大核心 2012年第2期361-377,共17页
网络异常检测对于保证网络的可靠运行具有重要意义,而现有的异常检测方法仅仅单独利用流量的时间相关性或空间相关性.针对这一不足,同时考虑流量矩阵的时空相关性,提出了一种基于MSPCA的全网络异常检测方法.该方法综合利用小波变换具有... 网络异常检测对于保证网络的可靠运行具有重要意义,而现有的异常检测方法仅仅单独利用流量的时间相关性或空间相关性.针对这一不足,同时考虑流量矩阵的时空相关性,提出了一种基于MSPCA的全网络异常检测方法.该方法综合利用小波变换具有的多尺度建模能力和PCA具有的降维能力对正常流量进行建模,然后采用Shewart控制图和EWMA控制图分析残余流量.此外,还利用滑动窗口机制对MSPCA异常检测方法进行在线扩展,提出了一种在线的MSPCA异常检测方法.因特网实测数据分析和模拟实验分析表明:MSPCA算法的检测性能优于PCA算法和近期提出的KLE算法;在线MSPCA算法的检测性能非常接近MSPCA算法,且单步执行时间很短,完全满足实时检测的需要. 展开更多
关键词 网络异常检测 多尺度建模 成分分析 流量矩阵 在线检测
在线阅读 下载PDF
基于主成分分析与前向反馈传播神经网络的风电场输出功率预测 被引量:26
7
作者 张明理 杨晓亮 +2 位作者 滕云 徐建源 林莘 《电网技术》 EI CSCD 北大核心 2011年第3期183-187,共5页
为了解决单一的传统预测方法在风电场输出功率预测中存在的问题,提出了基于主成分前向反馈神经网络的预测方法。首先采用K-S方法对样本进行选取;然后用主成分分析法提取样本有效信息,求解出主成分,构建神经网络模型进行输出功率预测。... 为了解决单一的传统预测方法在风电场输出功率预测中存在的问题,提出了基于主成分前向反馈神经网络的预测方法。首先采用K-S方法对样本进行选取;然后用主成分分析法提取样本有效信息,求解出主成分,构建神经网络模型进行输出功率预测。结果表明,主成分分析后的神经网络模型消除了输入因子的相关性并简化了网络结构,使网络加速收敛。实例验证,与单一的神经网络模型相比,预测精度有所提高,为风电场输出功率预测提供了一种有效的方法。 展开更多
关键词 风电场 功率预测 成分分析 BP神经网络
在线阅读 下载PDF
基于主成分分析与神经网络的采矿方法优选 被引量:96
8
作者 陈建宏 刘浪 +1 位作者 周智勇 永学艳 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第5期1967-1972,共6页
基于利用神经网络预测采矿方法存在一些不足,建立主成分分析法与神经网络结合的采矿方法优选模型。对神经网络的输入数据进行主成分分析,使输入数据不相关且减少。研究结果表明:利用主成分分析法可将输入数据减少,消除由于BP网络输入数... 基于利用神经网络预测采矿方法存在一些不足,建立主成分分析法与神经网络结合的采矿方法优选模型。对神经网络的输入数据进行主成分分析,使输入数据不相关且减少。研究结果表明:利用主成分分析法可将输入数据减少,消除由于BP网络输入数据太多而影响数据处理速度的缺陷;把主成分分析法和神经网络结合进行采矿方法优选,可使预测精度大大提高。 展开更多
关键词 采矿方法 成分分析 BP神经网络
在线阅读 下载PDF
基于主成分分析和人工神经网络的激光诱导击穿光谱塑料分类识别方法研究 被引量:36
9
作者 王茜蒨 黄志文 +2 位作者 刘凯 李文江 阎吉祥 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第12期3179-3182,共4页
研究了人工神经网络在激光诱导击穿光谱(LIBS)塑料分类识别方面的应用。选用七种常见的塑料作为实验样品,获得每种样品的170组LIBS光谱数据,利用主成分分析获得前五个主成分的得分矩阵。用每种塑料样品的130组光谱数据的主成分得分矩阵... 研究了人工神经网络在激光诱导击穿光谱(LIBS)塑料分类识别方面的应用。选用七种常见的塑料作为实验样品,获得每种样品的170组LIBS光谱数据,利用主成分分析获得前五个主成分的得分矩阵。用每种塑料样品的130组光谱数据的主成分得分矩阵作为训练集,建立反向传播(BP)人工神经网络模型。将其余40组主成分得分作为测试数据输入训练好的模型进行分类识别,其识别准确度达到97.5%。实验结果表明,通过采用主成分分析与BP人工神经网络相结合的方法,可以很好地进行塑料激光诱导击穿光谱的分类识别,对塑料的回收利用有重要价值。 展开更多
关键词 激光诱导击穿光谱 塑料 成分分析 BP人工神经网络 分类识别
在线阅读 下载PDF
基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究 被引量:149
10
作者 何勇 李晓丽 邵咏妮 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2006年第5期850-853,共4页
提出了一种用近红外光谱技术快速鉴别苹果品种的新方法,首先用主成分分析法对苹果品种进行聚类分析并获取苹果的近红外指纹图谱,再结合人工神经网络技术进行品种鉴别。主成分分析表明,主成分1和主成分2的累积可信度已达98%,以主成分1和... 提出了一种用近红外光谱技术快速鉴别苹果品种的新方法,首先用主成分分析法对苹果品种进行聚类分析并获取苹果的近红外指纹图谱,再结合人工神经网络技术进行品种鉴别。主成分分析表明,主成分1和主成分2的累积可信度已达98%,以主成分1和2对所有建模样本的得分值做出的得分图,对不同种类苹果具有很好的聚类作用。利用主成分分析得到的载荷图可以得到对于苹果品种敏感的特征波段,用特征波段图谱作为神经网络的输入建立三层BP人工神经网络模型。每个品种各25个苹果共75个用来建立神经网络模型,余下的共15个用于预测。对未知的15个样本进行预测,品种识别准确率达到100%。说明文章提出的方法具有很好的分类和鉴别作用,为苹果的品种鉴别提供了一种新方法。 展开更多
关键词 近红外光谱 苹果 成分分析 人工神经网络 聚类
在线阅读 下载PDF
改进的主成分分析网络极光图像分类方法 被引量:11
11
作者 韩冰 贾中华 高新波 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2017年第1期83-88,共6页
极光的不同形态蕴含了不同的物理意义,进行极光图像的分类研究对人类生活具有极其重要的科学价值.笔者在简单的深度学习模型主成分分析网络的基础上提出了一种改进的主成分分析网络极光图像分类方法.首先利用改进的主成分分析网络提取... 极光的不同形态蕴含了不同的物理意义,进行极光图像的分类研究对人类生活具有极其重要的科学价值.笔者在简单的深度学习模型主成分分析网络的基础上提出了一种改进的主成分分析网络极光图像分类方法.首先利用改进的主成分分析网络提取极光图像的特征,然后将所得特征输入支持向量机对极光图像进行分类.在中国北极黄河站的全天空图像数据库的分类实验结果表明,所提方法取得了较高分类准确率. 展开更多
关键词 极光图像 深度学习 成分分析 二维成分分析 成分分析网络
在线阅读 下载PDF
工业网络流量异常检测的概率主成分分析法 被引量:22
12
作者 侯重远 江汉红 +1 位作者 芮万智 刘亮 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第2期70-75,共6页
针对主成分分析(PCA)法用于工业测控网络流量异常检测时存在的误报率高的问题,提出了一种基于概率主成分分析(PPCA)的检测算法.首先通过分析误报成因,建立了工业测控网络流量矩阵的PPCA模型,然后使用迭代变分贝叶斯算法辨识该模型的参数... 针对主成分分析(PCA)法用于工业测控网络流量异常检测时存在的误报率高的问题,提出了一种基于概率主成分分析(PPCA)的检测算法.首先通过分析误报成因,建立了工业测控网络流量矩阵的PPCA模型,然后使用迭代变分贝叶斯算法辨识该模型的参数,再利用模型参数估计值求解流量矩阵的秩的分布函数并得到秩的极大似然估计值,最后以秩的跃变状况为判据进行异常流量检测.模拟攻击实验表明,该方法使漏报率平均下降了32%,从而有效降低了PCA方法的误报率. 展开更多
关键词 工业网络 流量异常检测 成分分析 误报率 变分贝叶斯
在线阅读 下载PDF
近红外光谱结合主成分分析和BP神经网络的转基因大豆无损鉴别研究 被引量:28
13
作者 吴江 黄富荣 +2 位作者 黄才欢 张军 陈星旦 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第6期1537-1541,共5页
为探究无损鉴别转基因大豆的可行性,利用近红外光谱分析仪对大豆扫描得到反射光谱,应用主成分分析结合BP神经网络方法进行分析鉴别。首先应用主成分分析法,得到包含大豆99.03%的光谱信息的6个主成分,再将其作为BP神经网络的输入,对应的... 为探究无损鉴别转基因大豆的可行性,利用近红外光谱分析仪对大豆扫描得到反射光谱,应用主成分分析结合BP神经网络方法进行分析鉴别。首先应用主成分分析法,得到包含大豆99.03%的光谱信息的6个主成分,再将其作为BP神经网络的输入,对应的大豆种类作为输出,建立一个三层BP神经网络模型。该模型对于转基因大豆的正确识别率为100%,说明近红外光谱结合主成分分析和BP神经网络的方法能无损快速准确地鉴别转基因大豆。 展开更多
关键词 近红外光谱 转基因大豆 成分分析 BP神经网络
在线阅读 下载PDF
基于主成分分析和遗传优化BP神经网络的光伏输出功率短期预测 被引量:42
14
作者 许童羽 马艺铭 +2 位作者 曹英丽 唐瑞 陈俊杰 《电力系统保护与控制》 EI CSCD 北大核心 2016年第22期90-95,共6页
针对光伏系统输出功率的波动性和间歇性特点,提出一种基于主成分分析(PCA)和遗传算法(GA)优化的BP神经网络功率短期预测方法。通过历史功率数据和实时气象因素对输出功率进行直接预测,利用主成分分析法将多个原始变量降维成少数彼此独... 针对光伏系统输出功率的波动性和间歇性特点,提出一种基于主成分分析(PCA)和遗传算法(GA)优化的BP神经网络功率短期预测方法。通过历史功率数据和实时气象因素对输出功率进行直接预测,利用主成分分析法将多个原始变量降维成少数彼此独立的变量,作为神经网络的输入。同时利用遗传算法的全局搜索特性在解空间中定位一个较好的空间,优化BP的初始权值阈值,克服了传统BP神经网络易陷入局部极小点、学习收敛速度慢的问题。通过建立不同预测模型进行对比,验证了所提算法和模型的有效性。 展开更多
关键词 成分分析 遗传算法 功率预测 BP神经网络 光伏系统
在线阅读 下载PDF
主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧 被引量:72
15
作者 陈英义 程倩倩 +2 位作者 方晓敏 于辉辉 李道亮 《农业工程学报》 EI CAS CSCD 北大核心 2018年第17期183-191,共9页
为了提高水产养殖溶解氧预测的精度,提出了基于主成分分析(principal component analysis,PCA)和长短时记忆神经网络(long short-term memory,LSTM)的水产养殖溶解氧预测模型。首先通过主成分分析提取水产养殖溶解氧的关键影响因子,消... 为了提高水产养殖溶解氧预测的精度,提出了基于主成分分析(principal component analysis,PCA)和长短时记忆神经网络(long short-term memory,LSTM)的水产养殖溶解氧预测模型。首先通过主成分分析提取水产养殖溶解氧的关键影响因子,消除了原始变量之间的相关性,降低了模型输入向量维度;然后,在Tensorflow深度学习框架的基础上建立LSTM神经网络的水产养殖溶解氧预测模型;最后,利用该模型对浙江省淡水水产养殖研究所综合实验基地某池塘溶解氧进行验证。试验结果表明:该模型与BP神经网络等其他浅层模型相比,模型评价指标平均绝对误差、均方根误差和平均绝对误差分别为0.274、0.089和0.147,均优于传统的预测方法;该模型具有良好的预测性能和泛化能力,能够满足水产养殖溶解氧精确预测的实际需要,可以为水产养殖水质精准调控提供参考。 展开更多
关键词 水产养殖 溶解氧预测 成分分析 LSTM神经网络 循环神经网络
在线阅读 下载PDF
基于主成分分析与人工神经网络的风电功率预测 被引量:136
16
作者 周松林 茆美琴 苏建徽 《电网技术》 EI CSCD 北大核心 2011年第9期128-132,共5页
提出了主成分分析与前馈神经网络相结合的风电功率预测模型。采用主成分分析法对原始多维输入变量进行预处理,选择输入变量的主成分作为神经网络的输入,既减少了输入变量的维数,又消除了各输入变量的相关性,从而简化了网络的结构,提高... 提出了主成分分析与前馈神经网络相结合的风电功率预测模型。采用主成分分析法对原始多维输入变量进行预处理,选择输入变量的主成分作为神经网络的输入,既减少了输入变量的维数,又消除了各输入变量的相关性,从而简化了网络的结构,提高了网络收敛性和稳定性。仿真结果表明,相对于一般神经网络模型,基于主成分分析的神经网络模型预测精度更高、泛化性能更好。 展开更多
关键词 风电功率预测 成分分析 前馈神经网络 泛化性能
在线阅读 下载PDF
基于主成分分析与BP神经网络的识别方法研究 被引量:40
17
作者 李军梅 胡以华 陶小红 《红外与激光工程》 EI CSCD 北大核心 2005年第6期719-723,共5页
利用BP神经网络对红外目标进行识别之前,若不对原始样本数据进行预处理与特征提取,一方面使识别结果准确性降低,另一方面使BP神经网络的结构复杂化,采用主成分分析法可解决这些问题。主成分分析法能较好地提取表征样本的少数几个主分量... 利用BP神经网络对红外目标进行识别之前,若不对原始样本数据进行预处理与特征提取,一方面使识别结果准确性降低,另一方面使BP神经网络的结构复杂化,采用主成分分析法可解决这些问题。主成分分析法能较好地提取表征样本的少数几个主分量,由该方法的特点可知,这几个主分量彼此不相关,非常符合特征优化的要求。研究结果表明,用该方法处理后的结果数据输入BP神经网络,提高了识别正确率,减少了训练时间,同时也简化了网络结构。将两种常见的模式识别方法结合用于红外目标识别:先由主成分分析法对原始样本数据进行精简处理,然后再由BP神经网络法进行分类识别,与传统的单一识别方法相比,准确度得到提高,计算量大为减少。 展开更多
关键词 神经网络 成分分析 目标识别
在线阅读 下载PDF
基于主成分分析与BP神经元网络的驾驶能耗组合预测模型研究 被引量:24
18
作者 赵晓华 姚莹 +2 位作者 伍毅平 陈晨 荣建 《交通运输系统工程与信息》 EI CSCD 北大核心 2016年第5期185-191,204,共8页
近年来交通领域能源消耗问题备受关注,本文从微观交通能耗预测出发,以实现北京市快速路基础路段的油耗预测为目的,基于出租车车载OBD/GPS终端,提取驾驶员微观驾驶行为数据,建立基于主成分分析与BP神经元网络的油耗组合预测模型,实现北... 近年来交通领域能源消耗问题备受关注,本文从微观交通能耗预测出发,以实现北京市快速路基础路段的油耗预测为目的,基于出租车车载OBD/GPS终端,提取驾驶员微观驾驶行为数据,建立基于主成分分析与BP神经元网络的油耗组合预测模型,实现北京市快速路基础路段油耗的准确预测.结果表明:速度均值及标准差、最大车速、工况百分比、加速度及减速度均值、行驶距离和动能对油耗影响程度相对较高;同时模型能够实现城市快速路基础路段能耗的有效预测,预测精度达到92.46%.该方法的研究为城市交通能源消耗的监管与把控提供了支持. 展开更多
关键词 城市交通 能耗排放 预测模型 驾驶行为 神经元网络 成分分析
在线阅读 下载PDF
基于聚类和主成分分析的神经网络预测模型 被引量:13
19
作者 林树宽 张冬岩 +2 位作者 李文贤 张天成 张一飞 《小型微型计算机系统》 CSCD 北大核心 2005年第12期2160-2163,共4页
提出一种基于聚类和主成分分析的神经网络模型,用于高炉运行指标的实时预测.首先采用谱系聚类将特性分散的样本划分成不同的子类,然后采用主成分分析方法对影响目标数据的众多变量进行降维处理,在此基础上,构建了高炉运行指标的神经网... 提出一种基于聚类和主成分分析的神经网络模型,用于高炉运行指标的实时预测.首先采用谱系聚类将特性分散的样本划分成不同的子类,然后采用主成分分析方法对影响目标数据的众多变量进行降维处理,在此基础上,构建了高炉运行指标的神经网络预测模型,大大改善了预报的精度和效率.通过对采集的高炉数据进行测试,表明本文提出方法的有效性. 展开更多
关键词 聚类 成分分析 神经网络模型
在线阅读 下载PDF
基于主成分分析的BP神经网络内螺纹冷挤压成形质量预测 被引量:17
20
作者 张敏 黎向锋 +1 位作者 左敦稳 缪宏 《中国机械工程》 EI CAS CSCD 北大核心 2012年第1期51-54,共4页
根据冷挤压内螺纹成形中径、螺距、牙型半角和牙高率等来综合评定内螺纹的成形质量等级,并基于BP神经网络对其进行预测。在BP神经网络预测模型数据前处理过程中,采用主成分分析方法以提取影响内螺纹冷挤压成形质量的主要因素,消除各影... 根据冷挤压内螺纹成形中径、螺距、牙型半角和牙高率等来综合评定内螺纹的成形质量等级,并基于BP神经网络对其进行预测。在BP神经网络预测模型数据前处理过程中,采用主成分分析方法以提取影响内螺纹冷挤压成形质量的主要因素,消除各影响因素之间的线性相关性。试验结果表明,与传统的BP神经网络相比,采用该方法的BP神经网络模型,简化了网络结构,提高了收敛速度及预测精度,能准确实现内螺纹成形质量等级的预测,从而为内螺纹质量的检测提供了一条新途径。 展开更多
关键词 内螺纹 成形质量预测 成分分析 神经网络
在线阅读 下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部