期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
改进的主成分分析网络极光图像分类方法 被引量:11
1
作者 韩冰 贾中华 高新波 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2017年第1期83-88,共6页
极光的不同形态蕴含了不同的物理意义,进行极光图像的分类研究对人类生活具有极其重要的科学价值.笔者在简单的深度学习模型主成分分析网络的基础上提出了一种改进的主成分分析网络极光图像分类方法.首先利用改进的主成分分析网络提取... 极光的不同形态蕴含了不同的物理意义,进行极光图像的分类研究对人类生活具有极其重要的科学价值.笔者在简单的深度学习模型主成分分析网络的基础上提出了一种改进的主成分分析网络极光图像分类方法.首先利用改进的主成分分析网络提取极光图像的特征,然后将所得特征输入支持向量机对极光图像进行分类.在中国北极黄河站的全天空图像数据库的分类实验结果表明,所提方法取得了较高分类准确率. 展开更多
关键词 极光图像 深度学习 成分分析 二维成分分析 主成分分析网络
在线阅读 下载PDF
核主成分分析网络的人脸识别方法 被引量:7
2
作者 胡伟鹏 胡海峰 +1 位作者 顾建权 李昊曦 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第5期48-51,56,共5页
主成分分析网络(principal component analysis network,PCANet)是当前流行深度学习模型,在人脸识别、目标识别、纹理分类和手写体数字识别等方面有广泛应用。在PCANet方法基础上,该文提出基于核主成分分析网络(kernel principal compon... 主成分分析网络(principal component analysis network,PCANet)是当前流行深度学习模型,在人脸识别、目标识别、纹理分类和手写体数字识别等方面有广泛应用。在PCANet方法基础上,该文提出基于核主成分分析网络(kernel principal component analysis network,KPCANet)的人脸识别方法。算法由四部分组成:主成分分析(PCA)、核主成分分析(KPCA)、二值化哈希、分块直方图。在Extended Yale B和AR两个经典人脸库上的实验结果表明,所提方法在识别性能上优于PCANet方法 ,算法对于不同光照、表情变化下的人脸有更好的识别率和鲁棒性。 展开更多
关键词 主成分分析网络 深度学习 人脸识别 核变换
在线阅读 下载PDF
改进多线性主成分分析网络及其在滚动轴承故障诊断中的应用 被引量:9
3
作者 郭家昕 程军圣 杨宇 《中国机械工程》 EI CAS CSCD 北大核心 2022年第2期187-193,201,共8页
针对实测滚动轴承振动信号通常存在噪声干扰,具有非线性和非平稳特性,而多线性主成分分析网络(MPCAnet)在处理复杂非平稳数据时存在非线性拟合能力差、特征聚类性一般的问题,通过引入核变换,提出了一种改进的多线性主成分分析网络,增大... 针对实测滚动轴承振动信号通常存在噪声干扰,具有非线性和非平稳特性,而多线性主成分分析网络(MPCAnet)在处理复杂非平稳数据时存在非线性拟合能力差、特征聚类性一般的问题,通过引入核变换,提出了一种改进的多线性主成分分析网络,增大了训练样本间的差异度,进一步提高了MPCAnet在处理非线性数据时的泛化能力和分类精度。通过不同滚动轴承故障诊断数据集对该方法进行验证,结果表明该方法具有较高的鲁棒性,能够准确识别滚动轴承的各类故障。 展开更多
关键词 卷积神经网络 改进多线性主成分分析网络 成分分析 滚动轴承 故障诊断
在线阅读 下载PDF
基于主成分分析网络的车牌检测方法 被引量:5
4
作者 钟菲 杨斌 《计算机科学》 CSCD 北大核心 2018年第3期268-273,共6页
车牌识别是智能交通系统的核心技术,车牌检测是车牌识别技术中至关重要的一步。传统的车牌检测方法多利用浅层的人工特征,在复杂场景下的车牌检测率不高。基于主成分分析网络的车牌检测算法,能够无监督地逐级提取车牌深层特征,可有效提... 车牌识别是智能交通系统的核心技术,车牌检测是车牌识别技术中至关重要的一步。传统的车牌检测方法多利用浅层的人工特征,在复杂场景下的车牌检测率不高。基于主成分分析网络的车牌检测算法,能够无监督地逐级提取车牌深层特征,可有效提高算法的鲁棒性。算法首先采用Sobel算子边缘检测和边缘对称性分析获取车牌候选区域;然后将候选区域输入到主成分分析网络中进行车牌深度特征提取,并利用支持向量机实现对车牌区域的判别;最后采用非极大值抑制算法标记最佳车牌检测区域。利用收集的复杂场景下的车辆图像对所提方法的参数进行分析,并将其与传统方法进行比较。实验结果表明,所提算法的鲁棒性高,性能优于传统的车牌检测方法。 展开更多
关键词 车牌检测 主成分分析网络 特征提取 非极大值抑制算法
在线阅读 下载PDF
融合图嵌入的光滑主成分分析网络图像识别算法 被引量:4
5
作者 陈飞玥 朱玉莲 +1 位作者 田甲略 蒋珂 《国防科技大学学报》 EI CAS CSCD 北大核心 2022年第3期16-22,共7页
主成分分析网络(principal component analysis network,PCANet)是一种简单的深度学习算法,在图像识别领域具有优秀的性能。将图嵌入思想融入PCANet,提出一种新的图像识别算法光滑主成分分析网络(Smooth-PCANet)。为了验证Smooth-PCANe... 主成分分析网络(principal component analysis network,PCANet)是一种简单的深度学习算法,在图像识别领域具有优秀的性能。将图嵌入思想融入PCANet,提出一种新的图像识别算法光滑主成分分析网络(Smooth-PCANet)。为了验证Smooth-PCANet算法的有效性,在人脸、手写体字符以及图片等不同数据集上构建实验,并将Smooth-PCANet与多种基于深度学习的图像识别算法作了对比。实验结果证明,Smooth-PCANet算法比PCANet获得了更高的识别性能,并且更有效地避免了过拟合,在小样本训练时具有显著优势。 展开更多
关键词 图像识别 主成分分析网络 图嵌入 深度学习 小样本训练集
在线阅读 下载PDF
一种基于改进BP神经网络的PCA人脸识别算法 被引量:51
6
作者 李康顺 李凯 张文生 《计算机应用与软件》 CSCD 北大核心 2014年第1期158-161,共4页
人脸识别作为模式识别领域的热点研究问题受到了广泛的关注。传统BP算法虽然具有自学习、自适应以及强大的非线性映射能力并且在人脸图像识别准确率上占有很大的优势,但算法具有收敛缓慢、训练过程振荡、易陷入局部极小点等缺点。针对传... 人脸识别作为模式识别领域的热点研究问题受到了广泛的关注。传统BP算法虽然具有自学习、自适应以及强大的非线性映射能力并且在人脸图像识别准确率上占有很大的优势,但算法具有收敛缓慢、训练过程振荡、易陷入局部极小点等缺点。针对传统BP算法的不足提出一种基于改进BP神经网络的PCA人脸识别算法,该算法采用PCA算法提取图像的主要特征,并结合一种新的权值调整方法改进BP算法进行图像分类识别。仿真实验表明,通过使用该算法对ORL人脸数据库的图像进行识别,其结果比传统算法具有更快的收敛速度和更高的识别率。 展开更多
关键词 人脸识别 成分分析rBP神经网络 附加动量 弹性梯度下降法
在线阅读 下载PDF
中国金融风险预警系统的构建研究——基于K-均值聚类算法和BP神经网络 被引量:22
7
作者 李梦雨 《中央财经大学学报》 CSSCI 北大核心 2012年第10期25-30,共6页
本文首先通过研究我国1994—2011年的经济数据,对关系到金融系统稳定的16项经济变量进行主成分分析,进而将所选变量归结为宏观经济、金融体系、对外经贸三个方面。在此基础上运用K—均值聚类算法,把金融系统风险状态分为四类。继而借助B... 本文首先通过研究我国1994—2011年的经济数据,对关系到金融系统稳定的16项经济变量进行主成分分析,进而将所选变量归结为宏观经济、金融体系、对外经贸三个方面。在此基础上运用K—均值聚类算法,把金融系统风险状态分为四类。继而借助BP神经网络建立了我国金融系统风险的预警模型,并通过2011年的数据对我国2012年金融系统运行状况进行了预测。预测结果表明我国2012年处于轻度风险状态,总需求的回落和资产泡沫的收缩将是影响我国金融系统稳定运行的主要问题。最后对我国如何预测并防范金融风险给出了政策建议。 展开更多
关键词 金融风险预警系统 成分分析K-均值聚类算法BP神经网络
在线阅读 下载PDF
基于稠密连接的通道混合式PCANet的低分辨率有遮挡人脸识别 被引量:1
8
作者 秦娥 何佳瑶 +2 位作者 刘银伟 朱娅妮 李小薪 《高技术通讯》 CAS 北大核心 2024年第6期602-615,共14页
针对低分辨率有遮挡人脸识别问题提出了基于稠密连接的通道混合式主成分分析网络(DCH-PCANet)。现有的PCANet模型的卷积层只使用了通道无关式卷积(CIC)。通道无关式卷积由于未考虑特征图在通道方向上的相关性,可以更好地凸显单个特征图... 针对低分辨率有遮挡人脸识别问题提出了基于稠密连接的通道混合式主成分分析网络(DCH-PCANet)。现有的PCANet模型的卷积层只使用了通道无关式卷积(CIC)。通道无关式卷积由于未考虑特征图在通道方向上的相关性,可以更好地凸显单个特征图的局部纹理特征,对于补偿因低分辨率、遮挡等因素导致的特征损失具有重要意义,但也会强化遮挡区域的特征,从而放大坏特征的影响范围;而通道相关式卷积(CDC)由于充分考虑了各特征图在通道方向上的相关性,可以较好地抑制坏特征的作用,形成较为稀疏的特征图。在PCANet中添加了基于通道相关式卷积的特征图提取分支,形成了通道混合式PCANet;并且引入了稠密连接,以充分利用低阶特征提升有遮挡图像识别的鲁棒性。针对如下4种数据集进行了实验:受控环境、真实遮挡和模拟低分辨率的人脸数据集(AR人脸数据集),非受控环境、真实遮挡和模拟低分辨率的人脸数据集(MFR2和PKUMasked-Face),非受控环境、真实遮挡和真实低分辨率的人脸数据集(自建数据集)。实验结果表明,与现有方法相比,所提出的基于稠密连接的通道混合式PCANet具更好的遮挡鲁棒性和低分辨率鲁棒性,可以作为前沿方法的有效补充,提升其识别性能。 展开更多
关键词 有遮挡人脸识别 主成分分析网络(PCANet) 通道相关式卷积(CDC) 稠密连接
在线阅读 下载PDF
基于全局网络PCA的DDoS攻击检测方法 被引量:1
9
作者 柳祎 付枫 孙鑫 《计算机应用研究》 CSCD 北大核心 2012年第6期2205-2207,共3页
随着网络规模的不断扩充,对于DDoS攻击的集中式检测方法已经无法满足实时性和准确性等要求。针对大规模网络中的DDoS攻击行为,提出了一种基于全局PCA的分布式拒绝服务攻击检测方法(WPCAD)。该方法由传统的OD矩阵得出各节点的ODin矩阵,... 随着网络规模的不断扩充,对于DDoS攻击的集中式检测方法已经无法满足实时性和准确性等要求。针对大规模网络中的DDoS攻击行为,提出了一种基于全局PCA的分布式拒绝服务攻击检测方法(WPCAD)。该方法由传统的OD矩阵得出各节点的ODin矩阵,各分布式处理单元通过PCA分析到达该节点的多路OD流之间的相关性,利用DDoS攻击流引起流量之间相关性突变的特性来完成检测。该方法采用分布式处理的方式,降低了检测数据所消耗的带宽,并满足了检测的实时性。实验结果表明该方法具有更好的检测效果。 展开更多
关键词 分布式拒绝服务攻击 全局网络成分分析 OD矩阵 分布式检测
在线阅读 下载PDF
基于深度子空间学习的焊缝缺陷检测方法 被引量:2
10
作者 李进军 王肖锋 葛为民 《计算机集成制造系统》 EI CSCD 北大核心 2024年第1期90-102,共13页
主成分分析网络(PCANet)是一个基于简化的卷积神经网络的深度子空间学习模型。针对PCANet算法应用于焊缝缺陷检测时无法体现数据完整结构信息、对噪声较敏感等问题,在PCANet的基础上提出一种鲁棒非贪婪双向二维PCANet(RNG-BDPCANet)焊... 主成分分析网络(PCANet)是一个基于简化的卷积神经网络的深度子空间学习模型。针对PCANet算法应用于焊缝缺陷检测时无法体现数据完整结构信息、对噪声较敏感等问题,在PCANet的基础上提出一种鲁棒非贪婪双向二维PCANet(RNG-BDPCANet)焊缝缺陷在线检测方法。RNG-BDPCANet在范数距离度量标准下,利用双向二维主成分分析作卷积核,并采用非贪婪策略得到目标函数最优的整体投影矩阵,对离群值具有较强的鲁棒性。最后,在自建的焊缝人工数据集、ORL和Yale B人脸数据集上分别进行实验。结果表明,所提出的算法在分类性能方面得到显著提高,具有较强的鲁棒性能。 展开更多
关键词 焊缝缺陷 主成分分析网络 深度学习 二维成分分析 鲁棒性 范数
在线阅读 下载PDF
面向边缘端设备的轻量化视频异常事件检测方法 被引量:5
11
作者 李南君 李爽 +2 位作者 李拓 邹晓峰 王长红 《计算机应用研究》 CSCD 北大核心 2024年第1期306-313,320,共9页
现有基于CNN模型的视频异常事件检测方法在精度不断提升的同时,面临架构复杂、参数庞大、训练冗长等问题,致使硬件算力需求高,难以适配无人机等计算资源有限的边缘端设备。为此,提出一种面向边缘端设备的轻量化异常事件检测方法,旨在平... 现有基于CNN模型的视频异常事件检测方法在精度不断提升的同时,面临架构复杂、参数庞大、训练冗长等问题,致使硬件算力需求高,难以适配无人机等计算资源有限的边缘端设备。为此,提出一种面向边缘端设备的轻量化异常事件检测方法,旨在平衡检测性能与推理延迟。首先,由原始视频序列提取梯度立方体与光流立方体作为事件表观与运动特征表示;其次,设计改进的小规模PCANet获取梯度立方体对应的高层次分块直方图特征;再次,根据每个局部分块的直方图特征分布情况计算表观异常得分,同时基于内部像素光流幅值累加计算运动异常得分;最后,依据表观与运动异常得分的加权融合值判别异常分块,实现表观与运动异常事件联合检测与定位。在公开数据集UCSD的Ped1与Ped2子集上进行实验验证,该方法的帧层面AUC分别达到86.7%与94.9%,领先大多数对比方法,且参数量明显降低。实验结果表明,该方法在低算力需求下,可以实现较高的异常检测稳定性和准确率,能够有效兼顾检测精度与计算资源,因此适用于低功耗边缘端设备。 展开更多
关键词 智能视频监控 边缘端设备 异常事件检测 主成分分析网络 分块直方图特征
在线阅读 下载PDF
基于PCANet和SVM的谎言测试研究 被引量:13
12
作者 顾凌云 吕文志 +3 位作者 杨勇 高军峰 官金安 周到 《电子学报》 EI CAS CSCD 北大核心 2016年第8期1969-1973,共5页
主成分分析网络(Principal Component Analysis Network,PCANet)是基于深度学习理论的一种非监督式的特征提取方法,它克服了手工提取特征的缺点,目前其有效性仅仅在图像处理领域中得到了验证.本文针对当前谎言测试方法中脑电信号特征提... 主成分分析网络(Principal Component Analysis Network,PCANet)是基于深度学习理论的一种非监督式的特征提取方法,它克服了手工提取特征的缺点,目前其有效性仅仅在图像处理领域中得到了验证.本文针对当前谎言测试方法中脑电信号特征提取困难的缺点,首次将PCANet方法应用到一维信号的特征提取领域,并对测谎实验的原始脑电信号提取特征,然后使用支持向量机(Support Vector Machine,SVM)将说谎者和诚实者的两类信号进行分类识别,将实验结果和其它分类器及未使用特征提取的分类效果进行了比较.实验结果显示相对未抽取任何特征的方法,提出的方法 PCANet-SVM可以获得更高的训练和测试准确率,表明了PCANet方法对于脑电信号特征提取的有效性,也为基于脑电信号的测谎提供了一种新的途径. 展开更多
关键词 主成分分析网络 脑电 测谎 深度学习 支持向量机
在线阅读 下载PDF
基于拉曼光谱技术药物包衣厚度分布预测模型的构建
13
作者 王学重 王亦卓 +2 位作者 张冉 侯光昊 吴韬 《高校化学工程学报》 EI CAS CSCD 北大核心 2024年第5期781-787,共7页
为了实现药物包衣层厚度分布的实时在线检测,解决离线检测平均厚度或称重不能满足均匀性分析及判断终点等问题,以蛋白哂双凸片的包衣过程为例,采用探头式拉曼光谱仪实时在线采集片剂表面拉曼光谱的同时,离线采集并统计包衣层厚度分布。... 为了实现药物包衣层厚度分布的实时在线检测,解决离线检测平均厚度或称重不能满足均匀性分析及判断终点等问题,以蛋白哂双凸片的包衣过程为例,采用探头式拉曼光谱仪实时在线采集片剂表面拉曼光谱的同时,离线采集并统计包衣层厚度分布。分别采用偏最小二乘法(PLS)和卷积神经网络(CNN)两种方法建立包衣厚度定量校正模型。结果表明,PLS模型预测相关性Rp2为0.923,CNN模型Rp2高达0.996,其模型的泛化能力更高,较PLS模型展现出更好的准确性。且CNN模型预测的包衣层厚度分布与离线统计的厚度分布结果较为一致(包衣时间为60 min,最可几厚度和分布宽度偏差仅为0.44%和1.24%),实现了药物包衣层厚度分布的准确预测。 展开更多
关键词 在线拉曼光谱 包衣厚度统计分布 偏最小二乘法 成分分析-卷积神经网络 包衣均匀性
在线阅读 下载PDF
多尺度空间金字塔池化PCANet的行人检测 被引量:9
14
作者 夏胡云 叶学义 +1 位作者 罗宵晗 王鹏 《计算机工程》 CAS CSCD 北大核心 2019年第2期270-277,共8页
针对非理想条件下行人检测的性能和效率问题,提出多尺度空间金字塔PCANet。将空间金字塔作为网络的特征池化层,通过分层池化特征的方式获得图像的显著性特征,并将底层特征和高层特征级联以获得样本的多尺度特征的向量表示,输入SVM分类... 针对非理想条件下行人检测的性能和效率问题,提出多尺度空间金字塔PCANet。将空间金字塔作为网络的特征池化层,通过分层池化特征的方式获得图像的显著性特征,并将底层特征和高层特征级联以获得样本的多尺度特征的向量表示,输入SVM分类器。在INRIA和NICTA数据库中,与HOG、CNN等算法进行行人检测对比实验,结果表明,该算法有更高的正确检测率、更低的漏检率和误检率。 展开更多
关键词 行人检测 深度学习架构 主成分分析网络 多尺度特征 空间金字塔池化 显著性特征
在线阅读 下载PDF
多层特征融合的PCANet及其在人脸识别中的应用 被引量:5
15
作者 陈飞玥 朱玉莲 陈晓红 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期127-133,共7页
主成分分析网络(PCANet)是一种简单的深度学习网络模型,在图像识别领域具有很强的应用潜力.本文在PCANet的基础上,通过对PCANet结构进行分析,构造了一种基于多层特征融合的PCANet(PCANet_dense)网络模型.与单纯地只将前一层网络输出作... 主成分分析网络(PCANet)是一种简单的深度学习网络模型,在图像识别领域具有很强的应用潜力.本文在PCANet的基础上,通过对PCANet结构进行分析,构造了一种基于多层特征融合的PCANet(PCANet_dense)网络模型.与单纯地只将前一层网络输出作为后一层网络输入的PCANet不同,PCANet_dense利用了不同层的特征信息.在2层网络结构中,它首先将原始图像特征和第1层网络的输出进行级联,然后将级联后的结果作为第2层网络的输入.而在3层网络结构中,它则将第1层和第2层网络的输出级联起来,作为第3层网络的输入.由于PCANet_dense在训练每一层(除了第1层)时使用了更多信息,因此能够获得比原PCANet更好的效果.为了验证所提方法的有效性,本文使用CMU PIE数据集构建网络模型,并在ORL、AR和Extended Yale B 3个公开人脸数据集上对所提出方法的性能进行了测试,实验结果表明,本文提出的PCANet_dense获得了比PCANet更好的性能. 展开更多
关键词 人脸识别 主成分分析网络 密集网络 特征融合 多层特征融合的PCANet
在线阅读 下载PDF
基于改进PCA-SOM的电静压伺服作动器油滤堵塞故障诊断 被引量:4
16
作者 陈换过 刘培君 +1 位作者 俞杭 肖雪 《中国机械工程》 EI CAS CSCD 北大核心 2021年第7期799-805,共7页
针对电静压伺服作动器(EHA)的油滤堵塞故障,提出利用可调式球头油堵预置不同程度的油滤堵塞工况进行数据采集,并在传统自组织映射神经网络(SOM)的基础上,引入主成分分析(PCA)法,利用各元主成分贡献率对神经元竞争域值各维系数进行修订,... 针对电静压伺服作动器(EHA)的油滤堵塞故障,提出利用可调式球头油堵预置不同程度的油滤堵塞工况进行数据采集,并在传统自组织映射神经网络(SOM)的基础上,引入主成分分析(PCA)法,利用各元主成分贡献率对神经元竞争域值各维系数进行修订,提出了改进PCA-SOM神经网络对系统堵塞状态进行判识。研究结果表明,与传统SOM神经网络和PCA-SOM神经网络相比,改进PCA-SOM神经网络在提高聚类效果的同时,提高了模型的准确率和训练速度,在EHA的油滤堵塞故障诊断中有更好的适用性。 展开更多
关键词 电静压伺服作动器 改进成分分析法-自组织映射神经网络 油滤堵塞 故障诊断
在线阅读 下载PDF
Risk based security assessment of power system using generalized regression neural network with feature extraction 被引量:2
17
作者 M. Marsadek A. Mohamed 《Journal of Central South University》 SCIE EI CAS 2013年第2期466-479,共14页
A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural n... A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy. 展开更多
关键词 generalized regression neural network line overload low voltage principle component analysis risk index voltagecollapse
在线阅读 下载PDF
Soft sensor for ratio of soda to aluminate based on PCA-RBF multiple network
18
作者 桂卫华 李勇刚 王雅琳 《Journal of Central South University of Technology》 2005年第1期88-92,共5页
Based on principal component analysis, a multiple neural network was proposed. The principal component analysis was firstly used to reorganize the input variables and eliminate the correlativity. Then the reorganized ... Based on principal component analysis, a multiple neural network was proposed. The principal component analysis was firstly used to reorganize the input variables and eliminate the correlativity. Then the reorganized variables were divided into 2 groups according to the original information and 2 corresponding neural networks were established. A radial basis function network was used to depict the relationship between the output variables and the first group input variables which contain main original information. An other single-layer neural network model was used to compensate the error between the output of radial basis function network and the actual output variables. At last, The multiple network was used as soft sensor for the ratio of soda to aluminate in the process of high-pressure digestion of alumina. Simulation of industry application data shows that the prediction error of the model is less than 3%, and the model has good generalization ability. 展开更多
关键词 principal component analysis multiple neural network soft sensor ratio of soda to aluminate (generalization ability)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部