期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
HS-SPME-GC-MS分析结合主成分分析技术在白芷挥发油中的应用研究 被引量:4
1
作者 陈伟兰 黎映琼 罗球珠 《辽宁中医杂志》 2023年第11期178-181,共4页
目的探究HS-SPME-GC-MS分析结合主成分分析(PCA)技术在白芷挥发油中的应用。方法对白芷块茎、根茎采用气相色谱质谱联用法分析其组成,并应用面积归一化法计算各成分的相对含量,予以PCA技术对结果进行验证。结果应用色谱峰面积归一化法... 目的探究HS-SPME-GC-MS分析结合主成分分析(PCA)技术在白芷挥发油中的应用。方法对白芷块茎、根茎采用气相色谱质谱联用法分析其组成,并应用面积归一化法计算各成分的相对含量,予以PCA技术对结果进行验证。结果应用色谱峰面积归一化法计算以获得各化学成分相对百分含量。从选择白芷样本的块茎、根茎部位挥发油获得率分别为6.1%以及7.5%。选择的块茎、块根部位内挥发油在种类以及含量上存在差异性,并鉴定出68种化合物,其中块茎获得化合物共51个,占总量75.00%,从根茎中鉴定59种化合物,占挥发油总量86.76%,白芷块茎、根茎2个不同部位化合物占比不同,其中以十二(烷)醇、邻苯二甲酸二异辛酯、十六碳酸含量最大,α-蒎烯、α-新丁香三环烯、杜松三烯、月桂醇醋酸酯、τ-木罗醇、环十二碳烷、5,8,1-十七碳三烯醇、十八(烷)醇、十六(烷)醇、十六碳酸、十四碳醛、邻苯二甲酸二异辛酯、十八碳二烯酸甘油三酯、十二(烷)醇等均存在较大差异。PCA分析亦进一步验证了其异同。结论白芷不同部位的挥发油种类及所占比均存在差异,可为白芷开发及质量控制提供了重要依据。 展开更多
关键词 HS-SPME-GC-MS分析 主成分分析技术 白芷挥发油
在线阅读 下载PDF
地震多属性RGBA颜色融合技术的应用研究 被引量:39
2
作者 丁峰 年永吉 +2 位作者 王治国 尹成 古发明 《石油物探》 EI CSCD 北大核心 2010年第3期248-252,共5页
利用数学工具和计算机图形能力将众多的地震属性映射为低维数的数据进行解释,可以提高地震属性分析的效率。地震多属性PCA-RGBA颜色融合技术是一种基于视觉的属性分析方法,其原理是,将多个地震属性通过主成分分析(PCA)技术进行降维,并... 利用数学工具和计算机图形能力将众多的地震属性映射为低维数的数据进行解释,可以提高地震属性分析的效率。地震多属性PCA-RGBA颜色融合技术是一种基于视觉的属性分析方法,其原理是,将多个地震属性通过主成分分析(PCA)技术进行降维,并将主分量按特征值由大到小排序,取前3个(或4个)主分量利用RGBA(Red-Green-Blue-Alpha)颜色融合原理获得一张融合图;再结合实际地质资料,在融合图像上依据颜色的区域性和突变异常等视觉特征,进行地质目标解释。在渤海SZ油田,应用该方法对常规地震属性数据进行了处理,在辅助断层识别、油藏流体时移变化区域判定等方面获得了良好的效果。 展开更多
关键词 多属性分析 主成分分析技术 颜色融合技术 成分分量 断层识别 油藏时移特征分析
在线阅读 下载PDF
基于Gabor小波的TOFD图像缺陷识别研究 被引量:4
3
作者 林乃昌 杨晓翔 +1 位作者 唐旭晟 朱志彬 《机电工程》 CAS 2013年第12期1450-1454,共5页
针对运用超声衍射时差法(TOFD)法对焊缝进行检测时,图像缺陷人工定性主要受检验人员经验和专业知识影响缺乏可靠性的问题,提出了一种TOFD图像缺陷自动定性的方法。该方法首先提取TOFD缺陷图像的Gabor小波特征,并依据这些特征,采用主成... 针对运用超声衍射时差法(TOFD)法对焊缝进行检测时,图像缺陷人工定性主要受检验人员经验和专业知识影响缺乏可靠性的问题,提出了一种TOFD图像缺陷自动定性的方法。该方法首先提取TOFD缺陷图像的Gabor小波特征,并依据这些特征,采用主成分分析技术(PCA)对Gabor特征进行降维,然后采用Fisher线性判别分析方法对其进行了判别分析,最后完成了缺陷的自动定性分析;同时,建立了一个实际系统,并在测试样本上进行了试验验证,试验在109幅人工试块缺陷及自然缺陷训练样本及25幅测试样本中进行,采用Gabor小波特征及原始图像像素特征所构建的缺陷分类器识别率比较。研究结果表明,基于Gabor小波特征的缺陷识别方法识别率达到72%,比原始图像特征的缺陷识别方法更优。 展开更多
关键词 超声衍射时差法 GABOR小波 FISHER 线性判别分析 主成分分析技术
在线阅读 下载PDF
Risk based security assessment of power system using generalized regression neural network with feature extraction 被引量:2
4
作者 M. Marsadek A. Mohamed 《Journal of Central South University》 SCIE EI CAS 2013年第2期466-479,共14页
A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural n... A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy. 展开更多
关键词 generalized regression neural network line overload low voltage principle component analysis risk index voltagecollapse
在线阅读 下载PDF
Reconstruction based approach to sensor fault diagnosis using auto-associative neural networks 被引量:4
5
作者 Mousavi Hamidreza Shahbazian Mehdi +1 位作者 Jazayeri-Rad Hooshang Nekounam Aliakbar 《Journal of Central South University》 SCIE EI CAS 2014年第6期2273-2281,共9页
Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal ... Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal component analysis(NLPCA)should be applied.In this work,NLPCA based on auto-associative neural network(AANN)was applied to model a chemical process using historical data.First,the residuals generated by the AANN were used for fault detection and then a reconstruction based approach called enhanced AANN(E-AANN)was presented to isolate and reconstruct the faulty sensor simultaneously.The proposed method was implemented on a continuous stirred tank heater(CSTH)and used to detect and isolate two types of faults(drift and offset)for a sensor.The results show that the proposed method can detect,isolate and reconstruct the occurred fault properly. 展开更多
关键词 fault diagnosis nonlinear principal component analysis auto-associative neural networks
在线阅读 下载PDF
Assessment of temporal and spatial variations in surface water quality using multivariate statistical techniques: A case study of Nenjiang River basin, China 被引量:2
6
作者 郑力燕 于宏兵 王启山 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3770-3780,共11页
Assessment of temporal and spatial variations in surface water quality is important to evaluate the health of a watershed and make necessary management decisions to control current and future pollution of receiving wa... Assessment of temporal and spatial variations in surface water quality is important to evaluate the health of a watershed and make necessary management decisions to control current and future pollution of receiving water bodies. In this work, surface water quality data for 12 physical and chemical parameters collected from 10 sampling sites in the Nenjiang River basin during the years(2012-2013) were analyzed. The results show that river water quality has significant temporal and spatial variations. Hierarchical cluster analysis(HCA) grouped 12 months into three periods(LF, MF and HF) and classified 10 monitoring sites into three regions(LP, MP and HP) based on the similarity of water quality characteristics. The principle component analysis(PCA)/factor analysis(FA) was used to recognize the factors or origins responsible for temporal and spatial water quality variations. Temporal and spatial PCA/FA revealed that the Nenjiang River water chemistry was strongly affected by rock/water interaction, hydrologic processes and anthropogenic activities. This work demonstrates that the application of HCA and PCA/FA has achieved meaningful classification based on temporal and spatial criteria. 展开更多
关键词 Nenjiang River basin water quality hierarchical cluster analysis(HCA) principal component analysis(PCA) factor analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部