期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合对比学习的三维点云主动标注方法
被引量:
1
1
作者
杨国庆
赖文韬
黄惠
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2023年第11期1664-1673,共10页
针对当前基于深度学习的点云理解任务需要大量标注数据但数据标注极为消耗成本的现实问题,提出一种基于对比学习预训练的点云主动筛选点云标注方法.通过交替运行对比学习预训练特征提取与主动学习选择模块,在未标注数据中筛选最有代表...
针对当前基于深度学习的点云理解任务需要大量标注数据但数据标注极为消耗成本的现实问题,提出一种基于对比学习预训练的点云主动筛选点云标注方法.通过交替运行对比学习预训练特征提取与主动学习选择模块,在未标注数据中筛选最有代表性的样本进行标注,从而在有限的标注成本下获得最佳性能的点云理解模型.首先基于对比学习的自监督范式进行预训练;然后固定模型参数,利用该模型对未标注点云提取特征,通过设计基于不确定性和特征多样性的指标,从中选择代表性数据进行标注.在点云分类以及分割等任务中,验证了所提方法的有效性;在ModelNet40数据集上的实验结果表明,该方法可有效地提高模型在弱监督下的表现,与随机选择数据进行标注的方法相比,可以提高20%以上的准确率,在接近10%的数据标注下最终达到73%的准确率;在ShapeNet数据集上的实验结果证明,该方法对于分割任务也有较好的表现,在1000组标注数据下取得了91%的精度,接近于监督训练水平.
展开更多
关键词
点云理解
对比学习
主动标注
弱监督训练
在线阅读
下载PDF
职称材料
题名
结合对比学习的三维点云主动标注方法
被引量:
1
1
作者
杨国庆
赖文韬
黄惠
机构
深圳大学可视计算研究中心
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2023年第11期1664-1673,共10页
基金
国家自然科学基金(62161146005,U21B2023)
广东省高等学校创新团队项目(2022KCXTD025)
+1 种基金
深圳市科技创新项目(KQTD20210811090044003,RCJC20200714114435012,JCYJ20210324120213036)
深圳大学研究生教育改革项目(SZUGS2022JG01)。
文摘
针对当前基于深度学习的点云理解任务需要大量标注数据但数据标注极为消耗成本的现实问题,提出一种基于对比学习预训练的点云主动筛选点云标注方法.通过交替运行对比学习预训练特征提取与主动学习选择模块,在未标注数据中筛选最有代表性的样本进行标注,从而在有限的标注成本下获得最佳性能的点云理解模型.首先基于对比学习的自监督范式进行预训练;然后固定模型参数,利用该模型对未标注点云提取特征,通过设计基于不确定性和特征多样性的指标,从中选择代表性数据进行标注.在点云分类以及分割等任务中,验证了所提方法的有效性;在ModelNet40数据集上的实验结果表明,该方法可有效地提高模型在弱监督下的表现,与随机选择数据进行标注的方法相比,可以提高20%以上的准确率,在接近10%的数据标注下最终达到73%的准确率;在ShapeNet数据集上的实验结果证明,该方法对于分割任务也有较好的表现,在1000组标注数据下取得了91%的精度,接近于监督训练水平.
关键词
点云理解
对比学习
主动标注
弱监督训练
Keywords
point cloud understanding
contrast learning
active learning
weakly-supervised learning
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合对比学习的三维点云主动标注方法
杨国庆
赖文韬
黄惠
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部