采用基于模糊逻辑推理的半主动控制技术对风机塔筒进行风致振动控制,通过对塔筒结构实时的动力响应进行模糊逻辑推理,利用半主动控制算法调节调频质量阻尼器(Tuned Mass Damper,TMD)的阻尼系数,输出不同的阻尼力,对塔筒结构进行振动控...采用基于模糊逻辑推理的半主动控制技术对风机塔筒进行风致振动控制,通过对塔筒结构实时的动力响应进行模糊逻辑推理,利用半主动控制算法调节调频质量阻尼器(Tuned Mass Damper,TMD)的阻尼系数,输出不同的阻尼力,对塔筒结构进行振动控制。通过Simulink软件进行半主动模糊控制系统仿真,结果表明,基于模糊逻辑推理的半主动控制比传统被动控制的控制效果更好,可以大幅降低塔筒结构顶端的位移响应。展开更多
Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu...Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.展开更多
In order to improve ride comfort and handling performance of the vehicle, an adaptive hybrid control algorithm is proposed for semi-active suspension systems. The virtues of sky-hook is combined with ground-hook contr...In order to improve ride comfort and handling performance of the vehicle, an adaptive hybrid control algorithm is proposed for semi-active suspension systems. The virtues of sky-hook is combined with ground-hook control strategies and a more suitable compromise for the suspension systems is chosen. The hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high speed conditions. Damping continuous adjustable absorber is used to continuously control the damping force so as to eliminate the damping force jerk instead of traditional on-off control policy. Based on suspension stroke measured by sensors, unscented Kalman filter is designed to estimate the suspension states in real-time for the realization of hybrid control, which improves the robustness of the control strategy and is adaptive to different types of road profiles. Finally, the proposed control algorithm is validated under the following two typical road profiles: half-sine speed bump road and the random road. The simulation results indicate that the hybrid control algorithm could offer a good coordination between ride comfort and handling of the vehicle.展开更多
A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An...A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude,pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%,and 45.2% for the pitch angle,38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%,the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%.展开更多
文摘采用基于模糊逻辑推理的半主动控制技术对风机塔筒进行风致振动控制,通过对塔筒结构实时的动力响应进行模糊逻辑推理,利用半主动控制算法调节调频质量阻尼器(Tuned Mass Damper,TMD)的阻尼系数,输出不同的阻尼力,对塔筒结构进行振动控制。通过Simulink软件进行半主动模糊控制系统仿真,结果表明,基于模糊逻辑推理的半主动控制比传统被动控制的控制效果更好,可以大幅降低塔筒结构顶端的位移响应。
基金Project(JCYJ20190808175801656)supported by the Science and Technology Innovation Commission of Shenzhen,ChinaProject(2021M691427)supported by Postdoctoral Science Foundation of ChinaProject(9680086)supported by the City University of Hong Kong,China。
文摘Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches.
基金Projects(51375046,51205021)supported by the National Natural Science Foundation of China
文摘In order to improve ride comfort and handling performance of the vehicle, an adaptive hybrid control algorithm is proposed for semi-active suspension systems. The virtues of sky-hook is combined with ground-hook control strategies and a more suitable compromise for the suspension systems is chosen. The hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high speed conditions. Damping continuous adjustable absorber is used to continuously control the damping force so as to eliminate the damping force jerk instead of traditional on-off control policy. Based on suspension stroke measured by sensors, unscented Kalman filter is designed to estimate the suspension states in real-time for the realization of hybrid control, which improves the robustness of the control strategy and is adaptive to different types of road profiles. Finally, the proposed control algorithm is validated under the following two typical road profiles: half-sine speed bump road and the random road. The simulation results indicate that the hybrid control algorithm could offer a good coordination between ride comfort and handling of the vehicle.
基金Project(2010GK3091) supported by Industrial Support Project in Science and Technology of Hunan Province, ChinaProject(10B058) supported by Excellent Youth Foundation Subsidized Project of Hunan Provincial Education Department, China
文摘A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude,pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%,and 45.2% for the pitch angle,38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%,the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%.