期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合引导注意力的中文长文本摘要生成
1
作者 郭哲 张智博 +2 位作者 周炜杰 樊养余 张艳宁 《电子学报》 CSCD 北大核心 2024年第12期3914-3930,共17页
当前基于深度学习的中文长文本摘要生成的研究存在以下问题:(1)生成模型缺少信息引导,缺乏对关键词汇和语句的关注,存在长文本跨度下关键信息丢失的问题;(2)现有中文长文本摘要模型的词表常以字为基础,并不包含中文常用词语与标点,不利... 当前基于深度学习的中文长文本摘要生成的研究存在以下问题:(1)生成模型缺少信息引导,缺乏对关键词汇和语句的关注,存在长文本跨度下关键信息丢失的问题;(2)现有中文长文本摘要模型的词表常以字为基础,并不包含中文常用词语与标点,不利于提取多粒度的语义信息.针对上述问题,本文提出了融合引导注意力的中文长文本摘要生成(Chinese Long text Summarization with Guided Attention,CLSGA)方法.首先,针对中文长文本摘要生成任务,利用抽取模型灵活抽取长文本中的核心词汇和语句,构建引导文本,用以指导生成模型在编码过程中将注意力集中于更重要的信息.其次,设计中文长文本词表,将文本结构长度由字统计改变至词组统计,有利于提取更加丰富的多粒度特征,进一步引入层次位置分解编码,高效扩展长文本的位置编码,加速网络收敛.最后,以局部注意力机制为骨干,同时结合引导注意力机制,以此有效捕捉长文本跨度下的重要信息,提高摘要生成的精度.在四个不同长度的公共中文摘要数据集LCSTS(大规模中文短文本摘要数据集)、CNewSum(大规模中国新闻摘要数据集)、NLPCC2017和SFZY2020上的实验结果表明:本文方法对于长文本摘要生成具有显著优势,能够有效提高ROUGE-1、ROUGE-2、ROUGE-L值. 展开更多
关键词 自然语言处理 中文长文本摘要生成 引导注意力 层次位置分解编码 局部注意力
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部