期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Self-Attention和TextCNN-BiLSTM的中文评论文本情感分析模型 被引量:2
1
作者 龙宇 李秋生 《石河子大学学报(自然科学版)》 北大核心 2025年第1期111-121,共11页
目前关于中文评论文本的情感分类方法大都无法充分捕捉到句子的全局语义信息,同时也在长距离的语义连接或者情感转折理解上具有局限性,因而导致情感分析的准确度不高。针对这个问题,本文提出一种融合SelfAttention和TextCNN-BiLSTM的文... 目前关于中文评论文本的情感分类方法大都无法充分捕捉到句子的全局语义信息,同时也在长距离的语义连接或者情感转折理解上具有局限性,因而导致情感分析的准确度不高。针对这个问题,本文提出一种融合SelfAttention和TextCNN-BiLSTM的文本情感分析方法。该方法首先采用文本卷积神经网络(TextCNN)来提取局部特征,并利用双向长短期记忆网络(BiLSTM)来捕捉序列信息,从而综合考虑了全局和局部信息,在特征融合阶段,再采用自注意力机制来动态地融合不同层次的特征表示,对不同尺度特征进行加权,从而提高重要特征的响应。实验结果表明,所提出的模型在家电商品中文评论语料和谭松波酒店评论语料数据集上的准确率分别达到93.79%和90.05%,相较于基准模型分别提高0.69%~3.59%和4.44%~11.70%,优于传统的基于卷积神经网络(Convolutional Neural Networks, CNN)、BiLSTM或CNN-BiLSTM等的情感分析模型。 展开更多
关键词 自注意力机制 中文评论文本 深度学习 情感分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部