期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Tri-training半监督学习的中文组织机构名识别 被引量:4
1
作者 蔡月红 朱倩 程显毅 《计算机应用研究》 CSCD 北大核心 2010年第1期193-195,共3页
针对中文组织机构名识别中的标注语料匮乏问题,提出了一种基于协同训练机制的组织机构名识别方法。该算法利用Tri-training学习方式将基于条件随机场的分类器、基于支持向量机的分类器和基于记忆学习方法的分类器组合成一个分类体系,并... 针对中文组织机构名识别中的标注语料匮乏问题,提出了一种基于协同训练机制的组织机构名识别方法。该算法利用Tri-training学习方式将基于条件随机场的分类器、基于支持向量机的分类器和基于记忆学习方法的分类器组合成一个分类体系,并依据最优效用选择策略进行新加入样本的选择。在大规模真实语料上与co-training方法进行了比较实验,实验结果表明,此方法能有效利用大量未标注语料提高算法的泛化能力。 展开更多
关键词 中文组织机构名 半监督学习 协同训练 Tri—training
在线阅读 下载PDF
加权平均Word2Vec实体对齐方法 被引量:6
2
作者 罗钰敏 刘丹 +1 位作者 尹凯 赵宏森 《计算机工程与设计》 北大核心 2019年第7期1927-1933,共7页
针对已有文本相似度计算方法应用在实体对齐上准确率低的问题,提出一种加权平均Word2Vec的实体对齐方法。利用Word2Vec训练文本,得到词向量模型;使用LTP(language technology platform)工具抽取文本中的命名实体并对其进行分词、去停用... 针对已有文本相似度计算方法应用在实体对齐上准确率低的问题,提出一种加权平均Word2Vec的实体对齐方法。利用Word2Vec训练文本,得到词向量模型;使用LTP(language technology platform)工具抽取文本中的命名实体并对其进行分词、去停用词处理,由Word2Vec得到处理后的词向量;根据分词后出现相同词的情况进行加权归一,得到各实体的特征向量;利用特征向量计算余弦相似度得到对齐结果。实验结果表明,与已有的文本相似度方法及未改进的Word2Vec方法对比,所提方法降低了实体对齐的漏检率,提高了准确性。 展开更多
关键词 词嵌入 实体识别 中文组织机构名 实体对齐 词向量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部