期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于特征融合的中文文本情感分析方法 被引量:10
1
作者 赵宏 傅兆阳 王乐 《兰州理工大学学报》 CAS 北大核心 2022年第3期94-102,共9页
针对现有的中文文本情感分析方法不能从句法结构、上下文信息和局部语义特征等方面综合考量文本语义信息的问题,提出一种基于特征融合的中文文本情感分析方法.首先,采用Jieba分词工具对评论文本进行分词和词性标注,并采用词向量训练工具... 针对现有的中文文本情感分析方法不能从句法结构、上下文信息和局部语义特征等方面综合考量文本语义信息的问题,提出一种基于特征融合的中文文本情感分析方法.首先,采用Jieba分词工具对评论文本进行分词和词性标注,并采用词向量训练工具GloVe获取融入词性的预训练词向量;然后,将词向量分别作为引入Self-Attention的BiGRU和TextCNN的输入,使用引入Self-Attention的BiGRU从文本的句法结构和文本的上下文信息两个方面综合提取全局特征,使用TextCNN提取文本的局部语义特征;最后,将全局特征和局部语义特征进行融合,并使用Softmax进行文本情感分类.实验结果表明,本文方法可以有效提高文本情感分析的准确率. 展开更多
关键词 中文文本情感分析 特征融合 特征提取 语义特征 自注意力机制 深度学习混合模型
在线阅读 下载PDF
CNN-BiGRU网络中引入注意力机制的中文文本情感分析 被引量:30
2
作者 王丽亚 刘昌辉 +1 位作者 蔡敦波 卢涛 《计算机应用》 CSCD 北大核心 2019年第10期2841-2846,共6页
传统卷积神经网络(CNN)中同层神经元之间信息不能互传,无法充分利用同一层次上的特征信息,缺乏句子体系特征的表示,从而限制了模型的特征学习能力,影响文本分类效果。针对这个问题,提出基于CNN-BiGRU联合网络引入注意力机制的模型,采用C... 传统卷积神经网络(CNN)中同层神经元之间信息不能互传,无法充分利用同一层次上的特征信息,缺乏句子体系特征的表示,从而限制了模型的特征学习能力,影响文本分类效果。针对这个问题,提出基于CNN-BiGRU联合网络引入注意力机制的模型,采用CNN-BiGRU联合网络进行特征学习。首先利用CNN提取深层次短语特征,然后利用双向门限循环神经网络(BiGRU)进行序列化信息学习以得到句子体系的特征和加强CNN池化层特征的联系,最后通过增加注意力机制对隐藏状态加权计算以完成有效特征筛选。在数据集上进行的多组对比实验结果表明,该方法取得了91.93%的F1值,有效地提高了文本分类的准确率,时间代价小,具有很好的应用能力。 展开更多
关键词 卷积神经网络 双向门限循环神经网络 注意力机制 中文文本情感分析
在线阅读 下载PDF
基于字符级双通道复合网络的中文文本情感分析 被引量:6
3
作者 王丽亚 刘昌辉 +2 位作者 蔡敦波 赵彤洲 王梦 《计算机应用研究》 CSCD 北大核心 2020年第9期2674-2678,共5页
针对传统卷积神经网络(CNN)缺乏句子体系特征的表示,以及传统双向门限循环神经网络(BiGRU)缺乏提取深层次特征能力。以中文文本为研究对象,在字符级词向量的基础上提出双通道的CNN-BiGRU复合网络,同时引入注意力机制的模型进行情感分析... 针对传统卷积神经网络(CNN)缺乏句子体系特征的表示,以及传统双向门限循环神经网络(BiGRU)缺乏提取深层次特征能力。以中文文本为研究对象,在字符级词向量的基础上提出双通道的CNN-BiGRU复合网络,同时引入注意力机制的模型进行情感分析。首先,在单通道上利用CNN提取深层次短语特征,利用BiGRU提取全局特征的能力深度学习短语体系特征,从而得到句子体系的特征表示;再通过增加注意力层进行有效特征筛选;最后,采用双通道结构的复合网络,丰富了特征信息,加强了模型的特征学习能力。在数据集上进行多组对比实验,该方法取得了92.73%的F1值结果,优于对照组,说明提出的模型能有效地提高文本分类的准确率。同时在单句测试上量化出模型优势,且实现了模型的实际应用能力。 展开更多
关键词 卷积神经网络 双向门限循环神经网络 注意力机制 中文文本情感分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部