期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
深层语义特征增强的ReLM中文拼写纠错模型
1
作者 张伟 牛家祥 +1 位作者 马继超 沈琼霞 《计算机应用》 北大核心 2025年第8期2484-2490,共7页
ReLM(Rephrasing Language Model)是当前性能领先的中文拼写纠错(CSC)模型。针对它在复杂语义场景中存在特征表达不足的问题,提出深层语义特征增强的ReLM——FeReLM(Feature-enhanced Rephrasing Language Model)。该模型利用深度可分... ReLM(Rephrasing Language Model)是当前性能领先的中文拼写纠错(CSC)模型。针对它在复杂语义场景中存在特征表达不足的问题,提出深层语义特征增强的ReLM——FeReLM(Feature-enhanced Rephrasing Language Model)。该模型利用深度可分离卷积(DSC)技术融合特征提取模型BGE(BAAI General Embeddings)生成的深层语义特征与ReLM生成的整体特征,从而有效提升模型对复杂上下文的解析力和拼写错误的识别纠正精度。首先,在Wang271K数据集上训练FeReLM,使模型持续学习句子中的深层语义和复杂表达;其次,迁移训练好的权重,从而将模型学习到的知识应用于新的数据集并进行微调。实验结果表明,在ECSpell和MCSC数据集上与ReLM、MCRSpell(Metric learning of Correct Representation for Chinese Spelling Correction)和RSpell(Retrieval-augmented Framework for Domain Adaptive Chinese Spelling Check)等模型相比,FeReLM的精确率、召回率、F1分数等关键指标的提升幅度可达0.6~28.7个百分点。此外,通过消融实验验证了所提方法的有效性。 展开更多
关键词 自然语言处理 特征增强 中文拼写纠错 语义融合 文本纠错 预训练语言模型
在线阅读 下载PDF
基于大语言模型的多输入中文拼写纠错方法 被引量:2
2
作者 马灿 黄瑞章 +2 位作者 任丽娜 白瑞娜 伍瑶瑶 《计算机应用》 北大核心 2025年第3期849-855,共7页
中文拼写纠错(CSC)是自然语言处理(NLP)中的一项重要研究任务,现有的基于大语言模型(LLM)的CSC方法由于LLM的生成机制,会生成和原文存在语义偏差的纠错结果。因此,提出基于LLM的多输入CSC方法。该方法包含多输入候选集合构建和LLM纠错... 中文拼写纠错(CSC)是自然语言处理(NLP)中的一项重要研究任务,现有的基于大语言模型(LLM)的CSC方法由于LLM的生成机制,会生成和原文存在语义偏差的纠错结果。因此,提出基于LLM的多输入CSC方法。该方法包含多输入候选集合构建和LLM纠错两阶段:第一阶段将多个小模型的纠错结果构建为多输入候选集合;第二阶段使用LoRA(Low-Rank Adaptation)对LLM进行微调,即借助LLM的推理能力,在多输入候选集合中预测出没有拼写错误的句子作为最终的纠错结果。在公开数据集SIGHAN13、SIGHAN14、SIGHAN15和修正后的SIGHAN15上的实验结果表明,相较于使用LLM直接生成纠错结果的方法Prompt-GEN-1,所提方法的纠错F1值分别提升了9.6、24.9、27.9和34.2个百分点,相较于表现次优的纠错小模型,所提方法的纠错F1值分别提升了1.0、1.1、0.4和2.4个百分点,验证了所提方法能提升CSC任务的效果。 展开更多
关键词 中文拼写纠错 大语言模型 模型集成 模型微调 提示学习
在线阅读 下载PDF
基于多模态信息融合的中文拼写纠错算法
3
作者 张庆 杨凡 方宇涵 《计算机应用》 北大核心 2025年第5期1528-1534,共7页
中文拼写纠错(CSC)的目标是检测和修正用户输入中文文本中的字或词级别的错误,这些错误通常是由于汉字之间的语义、字音或字形相似而导致的误用。然而,现有模型通常忽略了局部信息,无法充分捕捉不同汉字之间的字音和字形相似性,也无法... 中文拼写纠错(CSC)的目标是检测和修正用户输入中文文本中的字或词级别的错误,这些错误通常是由于汉字之间的语义、字音或字形相似而导致的误用。然而,现有模型通常忽略了局部信息,无法充分捕捉不同汉字之间的字音和字形相似性,也无法有效地将这些信息与语义信息结合起来。为了解决这些问题,提出一种基于多模态信息融合的CSC算法PWSpell。该算法利用卷积注意力机制关注局部语义信息,利用拼音编码捕捉汉字之间的字音相似关系,并首次将五笔编码引入CSC领域,用于捕捉汉字之间的字形相似关系。此外,将这2种相似关系与经过BERT(Bidirectional Encoder Representation from Transformers)处理的语义信息进行选择性融合。实验结果表明,PWSpell在SIGHAN 2015测试集的检测级指标上准确率、精确率、F1值以及校正级指标精确率、F1值上均有提升,其中校正级的精确率至少提升了1个百分点;消融实验结果也验证了算法中各个模块的设计都能有效提升模型的性能。 展开更多
关键词 中文自然语言处理 中文拼写纠错 BERT 多模态信息融合 局部信息
在线阅读 下载PDF
融合位置编码的中文拼写纠错方法 被引量:1
4
作者 赵建辉 林川 +1 位作者 任丽娜 黄瑞章 《计算机工程与设计》 北大核心 2024年第9期2844-2851,共8页
在中文拼写纠错任务中,字符在文本中的距离信息和顺序信息是重要的特征,因此位置编码至关重要。传统的位置编码无法区分字符的前后联系,此外二阶段方式的纠错方案存在错误传播问题。针对上述问题,提出一种多任务学习下融合位置编码的中... 在中文拼写纠错任务中,字符在文本中的距离信息和顺序信息是重要的特征,因此位置编码至关重要。传统的位置编码无法区分字符的前后联系,此外二阶段方式的纠错方案存在错误传播问题。针对上述问题,提出一种多任务学习下融合位置编码的中文拼写纠错方法,使用融合位置编码更好地为模型提供位置信息;使用多任务学习机制缓解错误传播问题,提升模型泛化能力。针对公开数据集进行实验,实验结果在F1值方面有稳定提升,验证了所提方法的有效性。 展开更多
关键词 中文拼写纠错 距离信息 顺序信息 位置编码 错误传播 融合位置编码 多任务学习
在线阅读 下载PDF
基于语境与文本结构融合的中文拼写纠错方法 被引量:1
5
作者 刘昌春 张凯 +2 位作者 包美凯 刘烨 刘淇 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期451-463,共13页
在中文拼写纠错任务的处理中往往存在对句子的语义理解不够且对于汉字的语音和视觉信息利用较少的问题,针对这一问题,提出一种基于语境置信度和汉字相似度的纠错方法(ECS).该方法基于深度学习的理论,融合汉字的视觉相似度、汉字的语音... 在中文拼写纠错任务的处理中往往存在对句子的语义理解不够且对于汉字的语音和视觉信息利用较少的问题,针对这一问题,提出一种基于语境置信度和汉字相似度的纠错方法(ECS).该方法基于深度学习的理论,融合汉字的视觉相似度、汉字的语音相似度以及微调过的预训练BERT模型,能自动提取句子语义并利用汉字的相似性.具体地,通过对预训练的中文BERT模型进行微调,使之能适应下游的中文拼写纠错任务;同时,利用表意文字描述序列获取汉字的树形结构作为视觉信息,采用汉字的拼音序列作为语音信息;最后,利用编辑距离得出汉字的视觉和语音相似度,并将这些相似度数据与微调过的BERT模型融合,以实现纠错任务.在SIGHAN标准数据集上的测试结果显示,和基准模型相比,提出的ECS方法其F1-score提升巨大,在检错层面上提升2.1%,在纠错层面上提升2.8%,也验证了将汉字的语境信息、视觉信息与语音信息融合用于中文拼写纠错任务的适用性. 展开更多
关键词 中文拼写纠错 BERT 汉字语音相似度 汉字视觉相似度 预训练模型
在线阅读 下载PDF
一种面向中文拼写纠错的自监督预训练方法 被引量:2
6
作者 苏锦钿 余珊珊 洪晓斌 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第9期90-98,共9页
预训练语言模型BERT/RoBERTa/MacBERT等虽然能够通过预训练任务中的掩码语言模型(MLM)很好地学习字和词的语法、语义及上下文特征,但其缺乏拼写错误识别及纠正能力,且在中文拼写纠错(CSC)任务中面临预训练与下游任务微调目标不一致的问... 预训练语言模型BERT/RoBERTa/MacBERT等虽然能够通过预训练任务中的掩码语言模型(MLM)很好地学习字和词的语法、语义及上下文特征,但其缺乏拼写错误识别及纠正能力,且在中文拼写纠错(CSC)任务中面临预训练与下游任务微调目标不一致的问题。为了进一步提升BERT/RoBERTa/MacBERT等模型的拼写错误识别及纠正能力,提出一种面向中文拼写纠错的自监督预训练方法MASC。MASC在MLM的基础上将对被掩码字的正确值预测转换成对拼写错误字的识别和纠正。首先,MASC将MLM对字的掩码扩展为相应的全词掩码,目的是提升BERT对单词级别的语义表征学习能力;接着,利用混淆集从音调相同、音调相近和字形相近等方面对MLM中的被掩码字进行替换,并将MLM的训练目标更改为识别正确的字,从而增强了BERT的拼写错误识别及纠正能力;最后,在3个公开的CSC语料集sighan13、sighan14和sighan15上的实验结果表明,MASC可在不改变BERT/RoBERTa/MacBERT等模型结构的前提下进一步提升它们在下游CSC任务中的效果,并且消融实验也证明了全词掩码、音调和字形等信息的重要性。 展开更多
关键词 中文拼写纠错 文本纠错 自然语言处理 预训练语言模型 深度学习 自监督
在线阅读 下载PDF
基于ChineseBert的中文拼写纠错方法 被引量:1
7
作者 崔凡 强继朋 +1 位作者 朱毅 李云 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第2期302-312,共11页
中文拼写错误主要集中在拼音相似和字形相似两个方面,而通用的预训练语言模型只考虑文本的语义信息,忽略了中文的拼音和字形特征.最新的中文拼写纠错(Chinese Spelling Correction,CSC)方法在预训练模型的基础上利用额外的网络来融入拼... 中文拼写错误主要集中在拼音相似和字形相似两个方面,而通用的预训练语言模型只考虑文本的语义信息,忽略了中文的拼音和字形特征.最新的中文拼写纠错(Chinese Spelling Correction,CSC)方法在预训练模型的基础上利用额外的网络来融入拼音和字形特征,但和直接微调预训练模型相比,改进的模型没有显著提高模型的性能,因为由小规模拼写任务语料训练的拼音和字形特征,和预训练模型获取的丰富语义特征相比,存在严重的信息不对等现象.将多模态预训练语言模型ChineseBert应用到CSC问题上,由于ChineseBert已将拼音和字形信息放到预训练模型构建阶段,基于ChineseBert的CSC方法不仅无须构建额外的网络,还解决了信息不对等的问题.由于基于预训练模型的CSC方法普遍不能很好地处理连续错误的问题,进一步提出SepSpell方法.首先利用探测网络检测可能错误的字符,再对可能错误的字符保留拼音特征和字形特征,掩码对应的语义信息进行预测,这样能降低预测过程中错误字符带来的干扰,更好地处理连续错误问题.在三个官方评测数据集上进行评估,提出的两个方法都取得了非常不错的结果. 展开更多
关键词 中文拼写纠错 Bert ChineseBert 多模态语言模型
在线阅读 下载PDF
基于文本序列错误概率和中文拼写错误概率融合的汉语纠错算法
8
作者 孙哲 禹可 吴晓非 《计算机应用研究》 CSCD 北大核心 2023年第8期2292-2297,共6页
中文拼写纠错是一项检测和纠正文本中拼写错误的任务。大多数中文拼写错误是在语义、读音或字形上相似的字符被误用,因此常见的做法是对不同模态提取特征进行建模。但将不同特征直接融合或是利用固定权重进行求和,使得不同模态信息之间... 中文拼写纠错是一项检测和纠正文本中拼写错误的任务。大多数中文拼写错误是在语义、读音或字形上相似的字符被误用,因此常见的做法是对不同模态提取特征进行建模。但将不同特征直接融合或是利用固定权重进行求和,使得不同模态信息之间的重要性关系被忽略以及模型在识别错误时会出现偏差,阻止了模型以有效的方式学习。为此,提出了一种新的模型以改善这个问题,称为基于文本序列错误概率和中文拼写错误概率融合的汉语纠错算法。该方法使用文本序列错误概率作为动态权重、中文常见拼写错误概率作为固定权重,对语义、读音和字形信息进行了高效融合。模型能够合理控制不同模态信息流入混合模态表示,更加针对错误发生处进行学习。在SIGHAN基准上进行的实验表明,所提模型的各项评估分数在不同数据集上均有提升,验证了该算法的可行性。 展开更多
关键词 中文拼写纠错 错误概率 预训练 信息融合 序列到序列模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部