期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于端到端句子级别的中文唇语识别研究 被引量:6
1
作者 张晓冰 龚海刚 +1 位作者 杨帆 戴锡笠 《软件学报》 EI CSCD 北大核心 2020年第6期1747-1760,共14页
近年来,随着深度学习的广泛应用,唇语识别技术也取得了快速的发展.与传统的方法不同,在基于深度学习的唇语识别模型中,通常包含使用神经网络对图像进行特征提取和特征理解两个部分.根据中文唇语识别的特点,将识别过程划分为两个阶段—... 近年来,随着深度学习的广泛应用,唇语识别技术也取得了快速的发展.与传统的方法不同,在基于深度学习的唇语识别模型中,通常包含使用神经网络对图像进行特征提取和特征理解两个部分.根据中文唇语识别的特点,将识别过程划分为两个阶段——图片到拼音(P2P)以及拼音到汉字(P2CC)的识别.分别设计两个不同子网络针对不同的识别过程,当两个子网络训练好后,再把它们放在一起进行端到端的整体架构优化.由于目前没有可用的中文唇语数据集,因此采用半自动化的方法从CCTV官网上收集了6个月20.95GB的中文唇语数据集CCTVDS,共包含14975个样本.此外,额外采集了269558条拼音汉字样本数据对拼音到汉字识别模块进行预训练.在CCTVDS数据集上的实验结果表明,所提出的ChLipNet可分别达到45.7%的句子识别准确率和58.5%的拼音序列识别准确率.此外,ChLipNet不仅可以加速训练、减少过拟合,并且能够克服汉语识别中的歧义模糊性. 展开更多
关键词 中文唇语识别 深度学习 中文言的特征 数据集采集及处理 端到端模型
在线阅读 下载PDF
基于时域卷积网络的中文句子级唇语识别算法 被引量:2
2
作者 刘培培 贾静平 《计算机应用研究》 CSCD 北大核心 2023年第9期2596-2602,共7页
针对现有中文句子级唇语识别技术存在的视觉歧义、特征提取不充分导致识别准确率偏低的问题,提出了一种基于时域卷积网络,采用三维时空卷积的中文句子级唇语识别算法——3DT-CHLipNet(Chinese LipNet based on 3DCNN,TCN)。首先,针对特... 针对现有中文句子级唇语识别技术存在的视觉歧义、特征提取不充分导致识别准确率偏低的问题,提出了一种基于时域卷积网络,采用三维时空卷积的中文句子级唇语识别算法——3DT-CHLipNet(Chinese LipNet based on 3DCNN,TCN)。首先,针对特征提取不充分的问题,所提算法采用了比长短期记忆网络(LSTM)感受野更大的时域卷积网络(temporal convolutional network,TCN)来提取长时依赖信息;其次,针对中文唇语识别中存在的“同型异义”视觉歧义问题,将自注意力机制应用于中文句子级唇语识别,以更好地捕获上下文信息,提升了句子预测准确率;最后,在数据预处理方面引入了时间掩蔽数据增强策略,进一步降低了算法模型的错误率。在最大的开源汉语普通话句子级数据集CMLR上的实验测试表明,与现有中文句子级唇语识别代表性算法相比,所提算法的识别准确率提高了2.17%至23.99%。 展开更多
关键词 中文唇语识别 深度学习 时域卷积网络 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部