期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
融合标签知识的中文医学命名实体识别 被引量:2
1
作者 尹宝生 周澎 《计算机科学》 CSCD 北大核心 2024年第S01期128-134,共7页
医学领域命名实体识别是信息抽取任务重要的研究内容之一,其训练数据主要来源于临床实验数据、健康档案、电子病历等非结构化文本,然而标注这些数据需要专业人员耗费大量人力、物力和时间资源。在缺乏大规模医学训练数据的情况下,医学... 医学领域命名实体识别是信息抽取任务重要的研究内容之一,其训练数据主要来源于临床实验数据、健康档案、电子病历等非结构化文本,然而标注这些数据需要专业人员耗费大量人力、物力和时间资源。在缺乏大规模医学训练数据的情况下,医学领域命名实体识别模型很容易出现识别错误的情况。为解决这一难题,文中提出了一种融合标签知识的中文医学命名实体识别方法,即通过专业领域词典获得文本标签的释义后,分别将文本、标签及标签释义编码,基于自适应融合机制进行融合,有效平衡特征提取模块和语义增强模块的信息流,从而提高模型性能。其核心思想在于医学实体标签是通过总结归纳大量医学数据得到的,而标签释义是对标签进行科学解释和说明的结果,模型融入这些蕴含了丰富的医学领域内的先验知识,可以使其更准确地理解实体在医学领域中的语义并提升其识别效果。实验结果表明,该方法在中文医学实体抽取数据集(CMeEE-V2)3个基线模型上分别取得了0.71%,0.53%和1.17%的提升,并且为小样本场景下的实体识别提供了一个有效的解决方案。 展开更多
关键词 中文医学命名实体识别 标签知识 先验知识 自适应融合机制 小样本
在线阅读 下载PDF
基于多粒度字形增强的中文医学命名实体识别 被引量:4
2
作者 刘威 马磊 +1 位作者 李凯 李蓉 《计算机工程》 CAS CSCD 北大核心 2024年第2期337-344,共8页
中文医学命名实体识别(CMNER)旨在从中文非结构化医学文本中提取实体。现有的基于字符的CMNER模型没有从不同角度全面考虑汉字的特点,限制了其应用于CMNER的性能。基于此,提出基于多粒度字形增强的中文医学命名实体识别模型。对于输入... 中文医学命名实体识别(CMNER)旨在从中文非结构化医学文本中提取实体。现有的基于字符的CMNER模型没有从不同角度全面考虑汉字的特点,限制了其应用于CMNER的性能。基于此,提出基于多粒度字形增强的中文医学命名实体识别模型。对于输入的句子,结合汉字的字形空间结构和偏旁部首的表示,同时根据相应的领域词典来匹配字符的领域词信息,增强字符的语义和潜在边界信息,使模型获得更好的实体识别能力;通过门控机制整合领域词和汉字的字形多粒度特征,综合考虑汉字的领域信息和汉字底层信息,从而具有更好的感知医学实体的能力。在此基础上,将多粒度字形增强的字符表示输入到双向长短记忆和条件随机场层,分别进行上下文编码和标签解码。实验结果表明,本文模型较于最佳基线模型在IMCS21和CMeEE数据集上的F1值分别提升了1.04%和0.62%。此外,通过消融实验验证了该模型的每个组成部分的有效性,在识别中文医学命名实体时具有较好的识别性能。 展开更多
关键词 命名实体识别 医学领域 字形结构 门控机制 领域词典
在线阅读 下载PDF
基于字形特征的中文医学命名实体识别方法 被引量:2
3
作者 孟伟伦 郭景峰 +3 位作者 邢珂萱 魏宁 王巧梭 刘滨 《电子学报》 EI CAS CSCD 北大核心 2024年第6期1945-1954,共10页
作为医学信息抽取的第一个关键环节,医学命名实体识别任务旨在从如电子医疗病例、中文医药说明书等非结构化文本中抽取出医学相关的实体.目前大多数中文医学命名实体识别工作通过在预训练模型上进行微调来获得文本表示向量,然后利用特... 作为医学信息抽取的第一个关键环节,医学命名实体识别任务旨在从如电子医疗病例、中文医药说明书等非结构化文本中抽取出医学相关的实体.目前大多数中文医学命名实体识别工作通过在预训练模型上进行微调来获得文本表示向量,然后利用特征工程来提升模型在医疗领域上的性能.这些模型大部分源自在通用数据集上表现较好的模型,没有考虑中文医学数据集的语言特性.通过在多个医学数据集上进行统计分析,发现部分类型的医学实体在字形上具有共性,如在汉字中大部分表示疾病含义的字符都包含“疒”,大部分表示身体器官的字符都包含“月”.针对这些问题,本文提出了一种基于字形特征的中文医学命名实体识别方法,该方法通过在文本表示向量上融合字形向量以及进一步利用数据集中负样本来提升模型的准确度和泛化能力.在多个公共的中文医学数据集上的实验结果表明,该方法获得了比其他模型更好的效果,并且通过消融实验证明了融合字形特征和从负样本中学习对于该任务是有效的. 展开更多
关键词 字形 负样本 两阶段 医学信息 命名实体识别 深度学习
在线阅读 下载PDF
基于自注意力机制与词汇增强的中文医学命名实体识别 被引量:1
4
作者 罗歆然 李天瑞 贾真 《计算机应用》 CSCD 北大核心 2024年第2期385-392,共8页
针对中文医学文本实体嵌套导致的单词边界识别困难问题以及现有栅格结构集成词汇特征所面临的语义信息损失严重的情况,提出一种用于中文医学命名实体识别(MNER)的自适应词汇信息增强模型。首先,利用双向长短期记忆(BiLSTM)网络编码字符... 针对中文医学文本实体嵌套导致的单词边界识别困难问题以及现有栅格结构集成词汇特征所面临的语义信息损失严重的情况,提出一种用于中文医学命名实体识别(MNER)的自适应词汇信息增强模型。首先,利用双向长短期记忆(BiLSTM)网络编码字符序列的上下文信息并捕捉较长距离的依赖关系;然后,对字符序列中每个字符的潜在单词信息进行字词对建模,采用自注意力机制实现不同单词之间的内部交互;最后,通过基于双线性注意力机制的词汇适配器将词汇信息集成到文本序列中的每个字符中,有效增强语义信息的同时充分利用单词丰富的边界信息,并抑制相关性低的单词。实验结果表明,所提模型与基于字符的基线模型相比,平均F1值分别提升了1.37~2.38个百分点,并在结合BERT后取得了最优的效果。 展开更多
关键词 医学命名实体识别 中文医学文本 词汇适配器 自注意力机制 双向长短期记忆网络
在线阅读 下载PDF
基于PMV-LSTM的中文医学命名实体识别 被引量:5
5
作者 陈雪松 朱鑫海 王浩畅 《计算机工程与设计》 北大核心 2022年第11期3257-3263,共7页
针对目前中文医学领域命名实体识别无法充分利用语义信息的问题,提出基于PMV-LSTM的中文医学领域命名实体识别方法。对医学语料进行词向量训练,采用pkuseg分词工具,使用“字符分割”方法扩充字符信息;利用Lattice LSTM结构动态地将词汇... 针对目前中文医学领域命名实体识别无法充分利用语义信息的问题,提出基于PMV-LSTM的中文医学领域命名实体识别方法。对医学语料进行词向量训练,采用pkuseg分词工具,使用“字符分割”方法扩充字符信息;利用Lattice LSTM结构动态地将词汇信息和字符信息融合以解决语义缺失问题,通过条件随机场解码得到实体标签。实验结果表明,该方法在3个医学数据集上性能均有提升,表明在重新训练词向量后,模型能够更好地拟合医学文本数据。 展开更多
关键词 医学词向量 命名实体识别 长短期记忆网络 字符特征 条件随机场
在线阅读 下载PDF
融合机器阅读理解的中文医学命名实体识别方法 被引量:2
6
作者 罗媛媛 杨春明 +2 位作者 李波 张晖 赵旭剑 《计算机科学》 CSCD 北大核心 2023年第9期287-294,共8页
医学命名实体识别是自动构建大规模医学知识库的关键,但医学文本中存在实体嵌套现象,采用序列标注的方法不能识别出嵌套中的实体。文中提出了基于阅读理解框架的中文医学命名实体识别方法,该方法将嵌套命名实体识别问题建模为机器阅读... 医学命名实体识别是自动构建大规模医学知识库的关键,但医学文本中存在实体嵌套现象,采用序列标注的方法不能识别出嵌套中的实体。文中提出了基于阅读理解框架的中文医学命名实体识别方法,该方法将嵌套命名实体识别问题建模为机器阅读理解问题,使用BERT建立阅读理解问题和医学文本之间的联系,并引入多头注意力机制强化问题和嵌套实体之间的语义联系,最后用两个分类器对实体开头和结尾位置进行预测。与目前5种主流方法相比,该方法取得了最优结果,综合F1值达到了67.65%;与经典的实体识别模型BiLSTM-CRF相比,F1值提升了7.17%,其中嵌套较多的临床表现实体提升16.81%。 展开更多
关键词 命名实体识别 中文医学 嵌套实体 机器阅读理解 多头注意力机制
在线阅读 下载PDF
基于多特征嵌入的中文医学命名实体识别
7
作者 黄健格 贾真 +1 位作者 张凡 李天瑞 《计算机科学》 CSCD 北大核心 2023年第6期243-250,共8页
针对基于字符表示的中文医学命名实体识别模型嵌入信息单一、缺失词边界和结构信息的问题,文中提出了一种融合多特征嵌入的医学命名实体识别模型。首先,将字符映射为固定长度的嵌入表示;其次,引入外部资源构建词汇特征,该特征能够补充... 针对基于字符表示的中文医学命名实体识别模型嵌入信息单一、缺失词边界和结构信息的问题,文中提出了一种融合多特征嵌入的医学命名实体识别模型。首先,将字符映射为固定长度的嵌入表示;其次,引入外部资源构建词汇特征,该特征能够补充字符的潜在词组信息;然后,根据中文的象形文字特点和文本序列特点,分别引入字符结构特征和序列结构特征,使用卷积神经网络对两种结构特征进行编码,得到radical-level词嵌入和sentence-level词嵌入;最后,将得到的多种特征嵌入进行拼接,输入长短期记忆网络编码,并使用条件随机场输出实体预测结果。将自建中文医疗数据和CHIP_2020任务提供的医疗数据作为数据集进行实验,实验结果表明,与基准模型相比,所提模型同时融合了词汇特征和文本结构特征,能够有效识别医学命名实体。 展开更多
关键词 命名实体识别 中文医学文本 词汇信息 文本结构特征 深度学习
在线阅读 下载PDF
基于随机提示的中文法律领域命名实体识别
8
作者 周鹏 何军 《计算机工程与设计》 北大核心 2025年第4期1167-1173,共7页
为解决中文法律领域命名实体识别面临的数据集稀缺和通用命名实体识别模型未充分利用BERT文本推理能力的问题,提出一种基于随机提示的命名实体识别方法。设计专用于法律领域的实体类型信息融合层,通过随机融合多角度的实体类型解释信息... 为解决中文法律领域命名实体识别面临的数据集稀缺和通用命名实体识别模型未充分利用BERT文本推理能力的问题,提出一种基于随机提示的命名实体识别方法。设计专用于法律领域的实体类型信息融合层,通过随机融合多角度的实体类型解释信息,结合BERT和BiLSTM,学习文本中融合实体类型解释信息的上下文语义特征。将命名实体识别任务建模为序列标注任务,通过CRF获取序列的标签信息。实验结果表明,该方法在中文法律领域命名实体识别任务中取得了显著的性能提升,F1值达到93.06%。 展开更多
关键词 中文法律实体 深度学习 命名实体识别 随机提示 双向长短时记忆网络 序列标注 条件随机场
在线阅读 下载PDF
面向中文小样本命名实体识别的BERT优化方法 被引量:1
9
作者 杨三和 赖沛超 +3 位作者 傅仰耿 王一蕾 叶飞扬 张林 《小型微型计算机系统》 北大核心 2025年第3期602-611,共10页
为解决中文小样本命名实体识别(NER)任务所面临的问题和挑战,提出了一种面向中文小样本NER的BERT优化方法,该方法包含两方面的优化:首先,针对训练样本数量不足限制了预训练语言模型BERT的语义感知能力的问题,提出了ProConBERT,一种基于... 为解决中文小样本命名实体识别(NER)任务所面临的问题和挑战,提出了一种面向中文小样本NER的BERT优化方法,该方法包含两方面的优化:首先,针对训练样本数量不足限制了预训练语言模型BERT的语义感知能力的问题,提出了ProConBERT,一种基于提示学习与对比学习的BERT预训练策略.在提示学习阶段,设计掩码填充模板来训练BERT预测出每个标记对应的中文标签词.在对比学习阶段,利用引导模板训练BERT学习每个标记和标签词之间的相似性与差异性.其次,针对中文缺乏明确的词边界所带来的复杂性和挑战性,修改BERT模型的第一层Transformer结构,并设计了一种带有混合权重引导器的特征融合模块,将词典信息集成到BERT底层中.最后,实验结果验证了所提方法在中文小样本NER任务中的有效性与优越性.该方法结合BERT和条件随机场(CRF)结构,在4个采样的中文NER数据集上取得了最好的性能.特别是在Weibo数据集的3个小样本场景下,模型的F 1值分别达到了63.78%、66.27%、70.90%,与其他方法相比,平均F 1值分别提高了16.28%、14.30%、11.20%.此外,将ProConBERT应用到多个基于BERT的中文NER模型中能进一步提升实体识别的性能. 展开更多
关键词 中文小样本命名实体识别 提示学习 对比学习 预训练 特征融合 BERT模型
在线阅读 下载PDF
融入拼音与词性特征的中文电子病历命名实体识别 被引量:4
10
作者 陆鑫涛 孙丽萍 +3 位作者 凌晨 童子龙 刘佳霖 汤其宇 《小型微型计算机系统》 北大核心 2025年第2期330-338,共9页
中文电子病历结构复杂,且相较英文具有更多的一字多音与一音多义现象,给命名实体识别任务带来了挑战.随着技术的成熟,当前主流的基于字形特征的命名实体识别方法难以获得较大提升,因此本文提出一种融入拼音与词性特征的中文电子病历命... 中文电子病历结构复杂,且相较英文具有更多的一字多音与一音多义现象,给命名实体识别任务带来了挑战.随着技术的成熟,当前主流的基于字形特征的命名实体识别方法难以获得较大提升,因此本文提出一种融入拼音与词性特征的中文电子病历命名实体识别方法,利用BERT预训练模型获取医学文本的动态向量表示,借助中文拼音特征对电子病历文本进行深度挖掘,并提取词性特征对拼音特征的不确定性加以约束.此外,对于这3种类型的特征,本文采用缩放点积注意力模块进行融合.在医疗领域数据集CCKS2018、CCKS2019,通用领域数据集Weibo上,F1值分别达到了98.66、87.25、73.41,相较基准模型BERT-BiLSTM-CRF分别提升了1.01、2.10、6.51.实验结果表明,与当前众多现有模型相比,本文方法展现出了更优越的性能,本研究为中文电子病历命名实体识别提供了新的思路. 展开更多
关键词 命名实体识别 中文电子病历 注意力机制 特征融合 数据挖掘
在线阅读 下载PDF
基于全局指针限定窗口的中文医学实体识别
11
作者 仇家康 张卫山 +2 位作者 陈涛 张宝宇 朱宜昌 《计算机工程与设计》 北大核心 2025年第9期2586-2591,共6页
针对中文医学文本复杂嵌套实体难以处理的问题,提出一种基于全局指针限定窗口的中文医学实体识别模型。该模型通过医疗领域自适应预训练和新词挖掘,学习并适应医疗领域的特定数据分布。使用全局指针网络解码,并引入实体限定窗口,有效减... 针对中文医学文本复杂嵌套实体难以处理的问题,提出一种基于全局指针限定窗口的中文医学实体识别模型。该模型通过医疗领域自适应预训练和新词挖掘,学习并适应医疗领域的特定数据分布。使用全局指针网络解码,并引入实体限定窗口,有效减少长冗余负样本对模型训练的干扰。为降低模型对样本顺序的敏感性,采用最优自蒸馏策略,使模型学习到更高质量的知识和特征表示。实验结果表明,该模型在4个公开数据集上的性能均显著高于基线模型。 展开更多
关键词 实体识别 中文医学 模型蒸馏 文本挖掘 全局指针 神经网络 深度学习
在线阅读 下载PDF
融合双仿射残差卷积和知识扩展的中文网络威胁情报命名实体识别
12
作者 冯嘉琦 高见 王明程 《中文信息学报》 北大核心 2025年第9期100-115,125,共17页
针对中文网络威胁情报中的实体边界模糊和长实体识别难题,以及领域内缺乏大规模高质量标注数据集的问题,提出了一种融合双仿射残差卷积神经网络(Biaffine Residual Convolutional Neural Network,BRCNN)和知识扩展(Knowledge Expansion,... 针对中文网络威胁情报中的实体边界模糊和长实体识别难题,以及领域内缺乏大规模高质量标注数据集的问题,提出了一种融合双仿射残差卷积神经网络(Biaffine Residual Convolutional Neural Network,BRCNN)和知识扩展(Knowledge Expansion,KE)的中文命名实体识别方法。首先将命名实体识别问题转化为字符对关系分类问题,采用双仿射注意力机制对字符对关系进行编码,并通过残差卷积网络深入挖掘字符对间的复杂语义联系,形成精确的字符对关系分数矩阵。此外,为缓解标注数据不足的问题,提出了一种基于知识扩展的半监督学习框架,通过师生模型的知识迁移机制,充分利用未标注数据,深入挖掘双仿射残差卷积网络在网络深度扩展方面的潜力,增强模型的泛化能力。在中文网络威胁情报数据集CDTier上的实验结果表明,BRCNN模型在F_(1)值上达到了84.33%,较基线模型RoBERTa-RDCNN-CRF显著提升了1.98%。进一步地,融合知识扩展后的BRCNN模型(BRCNN+KE)将F_(1)值提升至85.21%,与目前性能最佳的基线模型UIE相比提升了1.71%。同时,该模型在超过10字符的长实体识别中优于所有基线模型,F_(1)值较RoBERTa-RDCNN-CRF提升近10%,较目前在该方面表现最好的Smooth Boundary模型提升4.1%。本实验的代码和数据集发布在https://github.com/powfuuu/BRCNN_KE。 展开更多
关键词 网络威胁情报 中文命名实体识别 深度学习 知识扩展
在线阅读 下载PDF
基于多特征融合和注意力机制的中文命名实体识别 被引量:1
13
作者 陈奕全 吴晓鸰 +1 位作者 占文韬 HEO Hoon 《小型微型计算机系统》 北大核心 2025年第2期339-345,共7页
近年来,基于字符级嵌入的BERT模型和基于词融合的模型都在中文命名实体识别领域取得了较好的效果,但目前这些模型从字符序列中提取出的特征信息还不够充分,模型性能还有一定的提升空间.因此本文提出了一种用于中文命名实体识别的多特征... 近年来,基于字符级嵌入的BERT模型和基于词融合的模型都在中文命名实体识别领域取得了较好的效果,但目前这些模型从字符序列中提取出的特征信息还不够充分,模型性能还有一定的提升空间.因此本文提出了一种用于中文命名实体识别的多特征融合模型,首先将输入中文语句转换为字词对序列,通过RoBERTa-wwm预训练语言模型将字词对序列中的字符序列表征为字符向量,获得全局语义特征;然后把词序列转化为词向量,再将字符向量和词向量输入到基于双线性注意力机制的词汇适配器获得字词融合特征;同时将字符向量送入到双向长短时记忆网络(BiLSTM)获得包含字符方向信息的上下文特征;最后将词汇适配器的输出和BiLSTM的输出进行动态特征融合获得包含全局语义信息、词汇信息和方向信息的上下文特征,再通过CRF解码获得最优预测序列.在多个公共数据集的实验结果验证了该模型能提取到更充分的特征信息,提高了识别性能. 展开更多
关键词 中文命名实体识别 多特征融合 词融合 预训练模型
在线阅读 下载PDF
基于MacBERT的融合依存句法信息和多视角词汇信息的中文命名实体识别方法
14
作者 李代成 李晗 +1 位作者 刘哲宇 龚诗恒 《计算机科学》 北大核心 2025年第S1期278-285,共8页
在实体类型开放和实体结构复杂的中文环境下,中文命名实体识别任务存在明显的实体边界判断错误和实体分类准确率低等问题。为了进一步改善上述问题,提出了一种以字符作为编码单位,并基于MacBERT预训练模型的中文命名实体识别模型——Mac... 在实体类型开放和实体结构复杂的中文环境下,中文命名实体识别任务存在明显的实体边界判断错误和实体分类准确率低等问题。为了进一步改善上述问题,提出了一种以字符作为编码单位,并基于MacBERT预训练模型的中文命名实体识别模型——MacBERT-SDI-ML。首先,为了提取更丰富的中文语义特征,提高实体识别的准确性,模型采用MacBERT作为嵌入层。其次,为了进一步增强实体表示的特征,提高实体分类的准确性,模型通过一个依存句法信息解析器(SDIP)对实体更丰富的依存信息进行更高效的提取,并将其融合到字符表示中。此外,考虑到字符在不同的词汇中可能处在不同的位置,模型设计了一种基于自注意力机制的面向多视角的词汇信息融合组件(MLIF),来进一步增强字符表示的边界特征,有助于提高对边界判断的能力。最后,分别在Weibo,OntoNotes和Resume数据集上对模型进行训练。实验表明,MacBERT-SDI-ML模型在3个数据集上的F1值分别达到72.97%,86.56%和98.45%。 展开更多
关键词 中文命名实体识别 MacBERT 词汇信息 依存信息 预训练模型 自注意力机制
在线阅读 下载PDF
基于双维信息与剪枝的中文猕猴桃文本命名实体识别方法
15
作者 齐梓均 牛当当 +3 位作者 吴华瑞 张礼麟 王仑峰 张宏鸣 《智慧农业(中英文)》 2025年第1期44-56,共13页
[目的/意义]中文猕猴桃文本在段落上下文主题与字符间的左右关系中,展现出垂直与水平双维度特性。若能充分利用中文猕猴桃文本的双维特性,将有助于进一步提升命名实体识别的识别效果。基于此,提出了一种基于双维信息与剪枝的命名实体识... [目的/意义]中文猕猴桃文本在段落上下文主题与字符间的左右关系中,展现出垂直与水平双维度特性。若能充分利用中文猕猴桃文本的双维特性,将有助于进一步提升命名实体识别的识别效果。基于此,提出了一种基于双维信息与剪枝的命名实体识别方法,命名为KIWI-Coord-Prune(kiwifruit-CoordKIWINER-PruneBiLSTM)。[方法]通过设计CoordKIWINER与PruneBi-LSTM两个模块,对中文猕猴桃文本中的双维信息进行精准处理。其中CoordKIWINER模块能够显著提升模型捕捉复杂和嵌套实体的能力,从而生成涵盖更多文本信息的加强字符矢量;PruneBi-LSTM模块在上一模块的基础上,加强了模型对重要特征的学习与识别能力,从而进一步提升了实体识别效果。[结果和讨论]在自建数据集KIWIPRO和四个公开数据集人民日报(People's Daily)、ClueNER、Boson,以及ResumeNER上进行试验,并与LSTM、Bi-LSTM、LR-CNN、Softlexicon-LSTM,以及KIWINER五个先进模型进行对比,本研究提出的方法在5个数据集上分别取得了较好的F1值,分别为89.55%、91.02%、83.50%、83.49%和95.81%。[结论]与现有方法相比,本研究提出的方法不仅能够有效提升中文猕猴桃领域文本的命名实体识别效果,且具有一定的泛化性,同时也能够为相关知识图谱和问答系统的构建等下游任务提供技术支持。 展开更多
关键词 中文命名实体识别 猕猴桃文本 自建数据集 多维度注意力机制 剪枝 深度学习 文本特征增强
在线阅读 下载PDF
位置标签增强的中文医学命名实体级联识别
16
作者 王旭阳 赵丽婕 张继远 《计算机工程与应用》 CSCD 北大核心 2024年第2期121-128,共8页
针对一般领域的命名实体识别方法不能直接用于中文医学专业实体的识别,现有的相关研究只专注于英文文本和扁平结构的医学实体识别等问题,通过对专业领域实体识别方法的研究,结合中文医学实体的特点提出了一种面向中文医学实体的级联识... 针对一般领域的命名实体识别方法不能直接用于中文医学专业实体的识别,现有的相关研究只专注于英文文本和扁平结构的医学实体识别等问题,通过对专业领域实体识别方法的研究,结合中文医学实体的特点提出了一种面向中文医学实体的级联识别方法。将每个字符元素相对于实体的位置标签嵌入模型,并结合中文医学实体跨度内不同元素的重要程度进行实体的融合表示。通过序列标注方法检测字符的位置标签,利用字符的位置信息指导候选实体生成,并进行实体语义分类。模型在CMeEE和CCKS2018数据集以及中文糖尿病科研文献数据集上分别进行扁平实体、嵌套实体和不连续性长实体的识别实验。实验结果表明,该方法能够有效地识别中文医学文本中不同结构的实体。 展开更多
关键词 中文医学命名实体 位置标签嵌入 结合元素重要程度的实体融合表示 级联识别 线性结构
在线阅读 下载PDF
基于MacBERT与全局指针网络的中文电子病历命名实体识别
17
作者 吴天宇 郭冬冬 +2 位作者 李文桥 李子康 苗琳 《科学技术与工程》 北大核心 2025年第11期4656-4665,共10页
针对现有序列标注方法不能有效解决中文电子病历嵌套实体识别问题,提出一种基于MacBERT与全局指针网络的中文电子病历命名实体识别模型。首先通过MacBERT-large预训练模型将文本转换为结合语境信息的动态向量,然后使用FGM (fast gradien... 针对现有序列标注方法不能有效解决中文电子病历嵌套实体识别问题,提出一种基于MacBERT与全局指针网络的中文电子病历命名实体识别模型。首先通过MacBERT-large预训练模型将文本转换为结合语境信息的动态向量,然后使用FGM (fast gradient method)方法生成对抗样本添加至原有向量并一同输入BiLSTM (bi-directional long short-term memory)网络获取上下文特征,并通过引入注意力机制增强长距离语义特征获取,最后利用全局指针网络模型同时考虑头部和尾部的特征信息进行解码以获得更好的医学嵌套实体预测效果。实验结果表明,本文模型相较于识别效果较好的主流模型全局指针网络模型在CCKS2019以及两个版本的CMeEE中文电子病历数据集上F1分别提高了1.8%、1.37%、1.72%,证明了模型的有效性。 展开更多
关键词 命名实体识别 中文电子病历 全局指针网络 注意力机制
在线阅读 下载PDF
基于多头注意力机制字词联合的中文命名实体识别 被引量:3
18
作者 王进 王猛旗 +2 位作者 张昕跃 孙开伟 朴昌浩 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第1期77-84,共8页
针对现有基于字词联合的中文命名实体识别方法会引入冗余词汇干扰、模型网络结构复杂、难以迁移的问题,提出一种基于多头注意力机制字词联合的中文命名实体识别算法.算法采用多头注意力机制融合词汇边界信息,并通过分类融合BIE词集降低... 针对现有基于字词联合的中文命名实体识别方法会引入冗余词汇干扰、模型网络结构复杂、难以迁移的问题,提出一种基于多头注意力机制字词联合的中文命名实体识别算法.算法采用多头注意力机制融合词汇边界信息,并通过分类融合BIE词集降低冗余词汇干扰.建立了多头注意力字词联合模型,包含字词匹配、多头注意力、融合等模块.与现有中文命名实体识别方法相比,本算法避免了设计复杂的序列模型,方便与现有基于字的中文命名实体识别模型结合.采用召回率、精确率以及F 1值作为评价指标,通过消融试验验证模型各个部分的效果.结果表明,本算法在MSRA和Weibo数据集上F 1值分别提升0.28、0.69,在Resume数据集上精确率提升0.07. 展开更多
关键词 中文命名实体识别 词汇冗余 词汇边界信息 字词联合 多头注意力机制 BIE词集
在线阅读 下载PDF
RIB-NER:基于跨度的中文命名实体识别模型 被引量:1
19
作者 田红鹏 吴璟玮 《计算机工程与科学》 CSCD 北大核心 2024年第7期1311-1320,共10页
命名实体识别是自然语言处理领域中诸多下游任务的重要基础。汉语作为重要的国际语言,在许多方面具有独特性。传统上,中文命名实体识别任务模型使用序列标记机制,该机制需要条件随机场捕获标签的依赖性,然而,这种方法容易出现标签的错... 命名实体识别是自然语言处理领域中诸多下游任务的重要基础。汉语作为重要的国际语言,在许多方面具有独特性。传统上,中文命名实体识别任务模型使用序列标记机制,该机制需要条件随机场捕获标签的依赖性,然而,这种方法容易出现标签的错误分类。针对这个问题,提出基于跨度的命名实体识别模型RIB-NER。首先,以RoBERTa-wwm-ext作为模型嵌入层,提供字符级嵌入,以获得更多的上下文语义信息和词汇信息。其次,利用IDCNN的并行卷积核来增强词之间的位置信息,从而使词与词之间联系更加紧密。同时,在模型中融合BiLSTM网络来获取上下文信息。最后,采用双仿射模型对句子中的开始标记和结束标记评分,使用这些标记探索跨度。在MSRA和Weibo 2个语料库上的实验结果表明,RIB-NER能够较为准确地识别实体边界,并分别获得了95.11%和73.94%的F1值。与传统深度学习相比,有更好的识别效果。 展开更多
关键词 中文命名实体识别 双仿射模型 迭代膨胀卷积神经网络 预训练模型 跨度
在线阅读 下载PDF
基于汉字多模信息与象形视觉对齐增强的古籍文本命名实体识别研究
20
作者 郑旭辉 王昊 裘靖文 《情报学报》 北大核心 2025年第4期452-465,共14页
古籍的语义解析与人文计算是建设文化强国的重要组成部分,而古籍文本命名实体识别(named entity recognition,NER)是开展后续古籍知识发现与组织的前提和基础,设计一种适用于简体化文言文特性的命名实体识别模型具有重要的研究意义。汉... 古籍的语义解析与人文计算是建设文化强国的重要组成部分,而古籍文本命名实体识别(named entity recognition,NER)是开展后续古籍知识发现与组织的前提和基础,设计一种适用于简体化文言文特性的命名实体识别模型具有重要的研究意义。汉字本身具有大量象形特征的视觉信息与发音信息,这些更贴合汉字发展历史的知识能够为识别古籍中的实体提供更多的信息以提高模型性能。基于此,本文构建了基于多模态汉字象形表示的GMAE-NER(guwen multi-information alignment enhanced NER)模型,该模型创新性地提出了汉字象形层面里图像与笔画信息的多模态特征处理和对齐方法,实现了将BERT(bidirectional encoder representations from transformers)表征与汉字视觉信息、发音信息相融合,有效增强了古籍文本命名实体识别的效果。本文将模型在纪传体史书《后汉书》上进行了大量的实验与对比,发现相较于基线模型,GMAE-NER在各个类别实体识别的F1指标上均得到了1.32~15.00个百分点的提升,并且能更好地识别出古籍文本中重叠表述的实体,消融分析结果也充分证明了该模型中视觉编码、发音编码与特征融合模块的有效性。 展开更多
关键词 古籍文本 中文命名实体识别 汉字字形 汉字发音 跨模态交互融合
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部