提出一种基于差值局部方向模式的人脸特征表示方法(difference local directional pattern,简称DLDP):首先,通过Kirsch掩模卷积运算,为每个像素计算8个方向的边缘响应值;然后,计算8个相邻边缘响应值的强度差,前k个最突出的强度差对应的...提出一种基于差值局部方向模式的人脸特征表示方法(difference local directional pattern,简称DLDP):首先,通过Kirsch掩模卷积运算,为每个像素计算8个方向的边缘响应值;然后,计算8个相邻边缘响应值的强度差,前k个最突出的强度差对应的方向编码为1,其他方向编码为0,形成一个8位二进制数表示对应的DLDP模式;此外,针对高分辨率的Kirsch掩模单纯考虑方向性而没有考虑像素位置权重的问题,提出相应的掩模权值设计方法;最后,把每幅图像划分成多个不重叠的局部图像块,通过统计图像块上不同DLDP模式个数生成相应的子直方图,所有子直方图被串联起来表示一幅人脸图像.实验结果表明,该方法在光照、表情、姿态和遮挡方面获得了较好的结果,尤其针对遮挡情况,表现更为突出.展开更多
针对LDP利用Kirsch算子计算8方向的边缘响应值并排序,特征提取速度慢的问题,提出了一种改进的分解局部方向模式DLDP(divided local directional pattern)特征提取方法。将Kirsch算子的8个方向掩模分成2个子方向掩模再分别计算边缘响应值...针对LDP利用Kirsch算子计算8方向的边缘响应值并排序,特征提取速度慢的问题,提出了一种改进的分解局部方向模式DLDP(divided local directional pattern)特征提取方法。将Kirsch算子的8个方向掩模分成2个子方向掩模再分别计算边缘响应值,获得2个编码(DLDP1和DLDP2),级联两个编码的直方图得到表情特征DLDP。然后利用主成分分析法(PCA,principal component analysis)降维处理。最后用支持向量机进行表情识别,在JAFFE数据库上的实验表明,本文方法与近几年效果较好的特征提取算法相比,不仅缩短了特征提取的运算时间,而且提高了识别率。展开更多
文摘提出一种基于差值局部方向模式的人脸特征表示方法(difference local directional pattern,简称DLDP):首先,通过Kirsch掩模卷积运算,为每个像素计算8个方向的边缘响应值;然后,计算8个相邻边缘响应值的强度差,前k个最突出的强度差对应的方向编码为1,其他方向编码为0,形成一个8位二进制数表示对应的DLDP模式;此外,针对高分辨率的Kirsch掩模单纯考虑方向性而没有考虑像素位置权重的问题,提出相应的掩模权值设计方法;最后,把每幅图像划分成多个不重叠的局部图像块,通过统计图像块上不同DLDP模式个数生成相应的子直方图,所有子直方图被串联起来表示一幅人脸图像.实验结果表明,该方法在光照、表情、姿态和遮挡方面获得了较好的结果,尤其针对遮挡情况,表现更为突出.