期刊文献+
共找到149篇文章
< 1 2 8 >
每页显示 20 50 100
基于核主成分分析和支持向量回归机的红外光谱多组分混合气体定量分析 被引量:15
1
作者 郝惠敏 汤晓君 +2 位作者 白鹏 刘君华 朱长纯 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2008年第6期1286-1289,共4页
提出了一种核主成分分析(KPCA)特征提取结合支持向量回归机(SVR)的红外光谱混合气体组分定量分析新方法。首先将特征吸收谱线严重重叠的混合气体光谱通过非线性变换映射到高维特征空间,然后在特征空间中再利用主成分分析法提取主成分,... 提出了一种核主成分分析(KPCA)特征提取结合支持向量回归机(SVR)的红外光谱混合气体组分定量分析新方法。首先将特征吸收谱线严重重叠的混合气体光谱通过非线性变换映射到高维特征空间,然后在特征空间中再利用主成分分析法提取主成分,提取出的主成分作为SVR的输入建立校正模型,实现了甲烷、乙烷、丙烷、异丁烷、正丁烷、异戊烷以及正戊烷七种组组分特征吸收光谱严重重叠的混合气体的定量分析。用KPCA-SVR所建模型对未知浓度混合气体的七种组分预测的RMSE(φ×10-6)较仅用SVR模型预测的RMSE(φ×10-6)降低了一个数量级。结果表明,核主成分分析法具有很强的非线性特征提取能力,可以充分利用全光谱数据并有效地消除光谱数据噪声,降低数据维数,与支持向量回归机结合可以提高红外光谱分析的精度,缩短模型计算时间,是一种有效的红外光谱分析新方法。 展开更多
关键词 主成分分析 支持向量回归 校正模型 FTIR 定量分析
在线阅读 下载PDF
求解非半正定核Huber-支持向量回归机问题的序列最小最优化算法 被引量:9
2
作者 周晓剑 马义中 +2 位作者 朱嘉钢 刘利平 汪建均 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第9期1178-1184,共7页
序列最小最优化(SMO)算法是求解大型支持向量机(SVM)问题的有效算法.已有的算法都要求核函数是正定的或半正定的,从而使其应用受到限制.针对这种缺点,本文提出一种新的的SMO算法,可求解非半正定核Huber-SVR问题.提出的算法在保证收敛的... 序列最小最优化(SMO)算法是求解大型支持向量机(SVM)问题的有效算法.已有的算法都要求核函数是正定的或半正定的,从而使其应用受到限制.针对这种缺点,本文提出一种新的的SMO算法,可求解非半正定核Huber-SVR问题.提出的算法在保证收敛的前提下可使非半正定Huber-SVR能够达到比较理想的回归精度,因而具有一定的理论意义和实用价值. 展开更多
关键词 支持向量 非半正定 序列最小最优化算法 Huber-支持向量回归
在线阅读 下载PDF
高斯核支持向量机分类和模型参数选择研究 被引量:41
3
作者 郑小霞 钱锋 《计算机工程与应用》 CSCD 北大核心 2006年第1期77-79,共3页
支持向量机(SupportVectorMachine,SVM)是近几年发展起来的机器学习新方法,以高斯核为核函数的支持向量机在实际应用中表现出良好的学习性能,被广泛应用于模式分类中。论文研究了高斯核支持向量机分类在IRIS分类问题上的应用,并结合结... 支持向量机(SupportVectorMachine,SVM)是近几年发展起来的机器学习新方法,以高斯核为核函数的支持向量机在实际应用中表现出良好的学习性能,被广泛应用于模式分类中。论文研究了高斯核支持向量机分类在IRIS分类问题上的应用,并结合结构风险最小化原则分析了误差惩罚参数C和高斯核宽度σ对SVM性能的影响,最后通过数值实验进一步分析了这种影响。 展开更多
关键词 支持向量 结构风险最小化原则 高斯 参数
在线阅读 下载PDF
复高斯小波核函数的支持向量机研究 被引量:7
4
作者 陈中杰 蔡勇 蒋刚 《计算机应用研究》 CSCD 北大核心 2012年第9期3263-3265,共3页
针对基于常用核函数的支持向量机在非线性系统参数辨识及预测方面的不足之处,构建了一种新的核函数——复高斯小波函数核函数。首先证明了新构建的核函数的正确性,即满足Mercy条件,表明其可以作为核函数;然后构建基于该核函数的支持向量... 针对基于常用核函数的支持向量机在非线性系统参数辨识及预测方面的不足之处,构建了一种新的核函数——复高斯小波函数核函数。首先证明了新构建的核函数的正确性,即满足Mercy条件,表明其可以作为核函数;然后构建基于该核函数的支持向量机,并将该支持向量机用于非线性系统的辨识和未知部分的预测。通过与常用核函数构建的支持向量机的仿真结果进行对比,验证了该方法的正确性和有效性。 展开更多
关键词 高斯小波函数 Mercy条件 支持向量 非线性系统辨识及预测
在线阅读 下载PDF
多尺度高斯核支持向量机算法 被引量:7
5
作者 王建国 赵鹏飞 +2 位作者 张文兴 秦波 刘文婧 《机床与液压》 北大核心 2020年第20期5-8,共4页
针对支持向量机中单尺度高斯核算法存在局部风险的问题,提出一种基于核排列的多尺度高斯核算法。利用核排列这一度量标准来选择高斯核函数的尺度,并把多个弱分类器聚集成一个强分类器得到多尺度高斯核,从而构造支持向量机模型。利用UCI... 针对支持向量机中单尺度高斯核算法存在局部风险的问题,提出一种基于核排列的多尺度高斯核算法。利用核排列这一度量标准来选择高斯核函数的尺度,并把多个弱分类器聚集成一个强分类器得到多尺度高斯核,从而构造支持向量机模型。利用UCI数据集Iris Plants、 Wine Recognition等仿真实验结果表明:所提出的基于核排列的多尺度高斯核算法比传统的单尺度高斯核算法具有更高的分类准确率。 展开更多
关键词 支持向量 排列 多尺度高斯构造
在线阅读 下载PDF
随机傅里叶特征空间中高斯核支持向量机模型选择 被引量:10
6
作者 冯昌 廖士中 《计算机研究与发展》 EI CSCD 北大核心 2016年第9期1971-1978,共8页
模型选择是支持向量机(support vector machines,SVMs)学习的关键问题.标准支持向量机学习本质上是求解一个凸二次优化问题,求解的时间复杂度为数据规模的立方级,而经典的模型选择方法往往需要多次训练支持向量机,这种模型选择方法对于... 模型选择是支持向量机(support vector machines,SVMs)学习的关键问题.标准支持向量机学习本质上是求解一个凸二次优化问题,求解的时间复杂度为数据规模的立方级,而经典的模型选择方法往往需要多次训练支持向量机,这种模型选择方法对于中等规模的支持向量机学习计算代价已较高,更难以扩展到大规模支持向量机学习.基于高斯核函数的随机傅里叶特征近似,提出一种新的、高效的核支持向量机模型选择方法.首先,利用随机傅里叶特征映射,将无限维隐式特征空间嵌入到一个相对低维的显式随机特征空间,并推导在2个不同的特征空间中分别训练支持向量机所得到的模型的误差上界;然后,以模型误差上界为理论保证,提出随机特征空间中核支持向量机的模型选择方法,应用随机特征空间中的线性支持向量机来逼近核支持向量机,计算模型选择准则的近似值,从而评价所对应的核支持向量机的相对优劣;最后,在标杆数据集上验证所提出方法的可行性和高效性.实验结果表明,所提出的模型选择方法与标准交叉验证方法的测试精度基本相当,但可显著地提高核支持向量机模型选择效率. 展开更多
关键词 模型选择 支持向量 傅里叶特征 高斯 交叉验证
在线阅读 下载PDF
一种改进的再生核支持向量机回归模型 被引量:2
7
作者 徐立祥 罗斌 +1 位作者 谢进 段宝彬 《计算机工程与应用》 CSCD 北大核心 2011年第24期100-102,共3页
基于支持向量机核函数的条件,将Sobolev Hilbert空间的再生核函数进行改进,给出一种新的支持向量机核函数,并提出一种改进的最小二乘再生核支持向量机的回归模型,该回归模型的参数被减少,且仿真实验结果表明:最小二乘支持向量机的核函... 基于支持向量机核函数的条件,将Sobolev Hilbert空间的再生核函数进行改进,给出一种新的支持向量机核函数,并提出一种改进的最小二乘再生核支持向量机的回归模型,该回归模型的参数被减少,且仿真实验结果表明:最小二乘支持向量机的核函数采用改进的再生核函数是可行的,改进后的再生核函数不仅具有核函数的非线性映射特征,而且也继承了该再生核函数对非线性逐级精细逼近的特征,回归的效果比一般的核函数更为细腻。 展开更多
关键词 支持向量 函数 再生 信号回归
在线阅读 下载PDF
高斯序列核支持向量机用于说话人识别 被引量:5
8
作者 李杰 刘贺平 《计算机工程与应用》 CSCD 北大核心 2010年第18期183-185,共3页
说话人识别问题具有重要的理论价值和深远的实用意义,在研究支持向量机核方法理论的基础上,将其与传统高斯混合模型(GMM)相结合构建成基于高斯序列核的支持向量机(SVM)。SVM的灵活性和强大分类能力主要在于可以根据要处理的问题来相应... 说话人识别问题具有重要的理论价值和深远的实用意义,在研究支持向量机核方法理论的基础上,将其与传统高斯混合模型(GMM)相结合构建成基于高斯序列核的支持向量机(SVM)。SVM的灵活性和强大分类能力主要在于可以根据要处理的问题来相应的选取核函数。在识别的过程中引入特征空间归正技术NAP(Nuisance Attribute Projection)对同一说话人在不同信道和环境所带来的特征差异进行弥补。用美国国家标准与技术研究所(NIST)2004年评测数据集进行实验,结果表明该方法可以大幅度提高识别率。 展开更多
关键词 支持向量 高斯线性 高斯非线性 NAP技术 说话人识别
在线阅读 下载PDF
基于数据依赖核支持向量机回归的风速预测模型 被引量:2
9
作者 王定成 倪郁佳 +1 位作者 陈北京 曹智丽 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期15-20,共6页
针对风速随机性大、影响因素多、预测准确度不高的情况,基于支持向量机与信息几何的统计学关联性,从信息几何学角度分析核函数的几何结构,构造数据依赖核函数,并与支持向量机回归相结合,形成数据依赖核支持向量机回归(Data Dependent Ke... 针对风速随机性大、影响因素多、预测准确度不高的情况,基于支持向量机与信息几何的统计学关联性,从信息几何学角度分析核函数的几何结构,构造数据依赖核函数,并与支持向量机回归相结合,形成数据依赖核支持向量机回归(Data Dependent Kernel-SVR,DDK-SVR)方法.将该方法用于风速预测中,建立DDK-SVR风速预测模型,并将预测结果与传统支持向量机、神经网络方法进行对比.结果表明,DDK-SVR方法具有更高的预测精度. 展开更多
关键词 风速预测 数据依赖 支持向量回归
在线阅读 下载PDF
Q-高斯核支持向量机的财务危机预报 被引量:1
10
作者 刘遵雄 黄志强 +1 位作者 晏峰 张恒 《计算机应用》 CSCD 北大核心 2013年第6期1767-1770,共4页
针对科学实践、经济生活等诸多领域数据分布相对复杂的分类问题,使用传统支持向量机(SVM)无法很好地刻画其变量间的相关性,从而影响分类性能。对于这一情况,提出使用经典高斯函数的参数推广形式——Q-高斯函数作为SVM的核函数构建财务... 针对科学实践、经济生活等诸多领域数据分布相对复杂的分类问题,使用传统支持向量机(SVM)无法很好地刻画其变量间的相关性,从而影响分类性能。对于这一情况,提出使用经典高斯函数的参数推广形式——Q-高斯函数作为SVM的核函数构建财务危机预警模型。结合沪深股市A股制造业上市公司的财务数据分别建立T-2和T-3财务预警模型进行实证分析,采用显著性检验筛选出合适的财务指标并利用交叉验证方法确定模型参数。相比高斯核SVM财务危机预警模型,使用Q-高斯核SVM建立的T-2和T-3模型的预报准确率都提高了大约3%,而且成本较高的第Ⅰ类错误最多降低了14.29%。 展开更多
关键词 财务危预警 支持向量 Q-高斯 显著性检验 交叉验证
在线阅读 下载PDF
基于核路径算法的支持向量回归机参数选择 被引量:2
11
作者 杨慧中 王芳 《控制工程》 CSCD 北大核心 2009年第1期23-26,87,共5页
参数选择是支持向量机研究领域的重要问题。针对核参数的选择,提出一种基于二分法的核参数解路径算法。由于解为核参数的非线性光滑函数,该算法随着参数的更新,可以在已有参数得出的解的基础上通过更新公式进行推导计算,从而求得当前参... 参数选择是支持向量机研究领域的重要问题。针对核参数的选择,提出一种基于二分法的核参数解路径算法。由于解为核参数的非线性光滑函数,该算法随着参数的更新,可以在已有参数得出的解的基础上通过更新公式进行推导计算,从而求得当前参数所对应的解,其目标函数的极值所对应的参数值即为最优参数解。该算法可以快速地求得最优参数。将该方法应用于双酚A生产过程的质量指标软测量建模,仿真结果表明了该算法的可行性和有效性。 展开更多
关键词 支持向量回归(SVR) 参数选择 路径算法 软测量
在线阅读 下载PDF
基于类间距的径向基函数-支持向量机核参数评价方法分析 被引量:16
12
作者 宋小杉 蒋晓瑜 +1 位作者 罗建华 姚军 《兵工学报》 EI CAS CSCD 北大核心 2012年第2期203-208,共6页
分析了径向基函数(RBF)核参数γ对空间映射结果的影响,得出3条结论。在此基础上,找到了1种新的核参数评价方法,该方法通过计算特征空间中两类之间的平均距离(ICMD)来评价γ的优劣。文章分别从理论和实验两方面证明了ICMD最大值的存在性... 分析了径向基函数(RBF)核参数γ对空间映射结果的影响,得出3条结论。在此基础上,找到了1种新的核参数评价方法,该方法通过计算特征空间中两类之间的平均距离(ICMD)来评价γ的优劣。文章分别从理论和实验两方面证明了ICMD最大值的存在性。为验证该方法的有效性,文中对7个样本集进行了两组参数选择实验:第一组实验通过ICMD找到最优核参数γ,再由10-折交叉验证得到最优惩罚因子C,称为"两步法";第二组实验采用基于10-折交叉验证的网格搜索法进行参数选择。结果显示两种方法均选择出了适当的参数,但前者花费的时间比后者大大缩短,验证了ICMD方法的有效性。 展开更多
关键词 人工智能 支持向量 高斯 参数评价 参数选择
在线阅读 下载PDF
一种新的混合核函数支持向量机 被引量:15
13
作者 刘明 周水生 吴慧 《计算机应用》 CSCD 北大核心 2009年第B12期167-168,206,共3页
针对单核函数支持向量机性能的局限性问题,提出将sigmoid核函数与高斯核函数组成一种新的混合核函数支持向量机。高斯核是典型的局部核;sigmoid核在神经网络中被证明具有良好的全局分类性能。新混合核函数结合二者的优点,其支持向量机... 针对单核函数支持向量机性能的局限性问题,提出将sigmoid核函数与高斯核函数组成一种新的混合核函数支持向量机。高斯核是典型的局部核;sigmoid核在神经网络中被证明具有良好的全局分类性能。新混合核函数结合二者的优点,其支持向量机的分类性能优于由单核函数构成的支持向量机,实验结果表明该方法的有效性。 展开更多
关键词 支持向量 混合 sigmoid 高斯 全局 局部
在线阅读 下载PDF
基于模糊支持向量回归机的WSNs链路质量预测 被引量:13
14
作者 舒坚 汤津 +2 位作者 刘琳岚 胡刚 刘松 《计算机研究与发展》 EI CSCD 北大核心 2015年第8期1842-1851,共10页
在无线传感器网络中,链路是实现节点互连和多跳通信的基本元素,链路质量是拓扑控制、路由协议和移动管理的基础,准确的链路质量预测不仅可以提高整个网络的数据吞吐率,降低节点能耗,还可延长整个网络的工作时间.在分析现有链路质量预测... 在无线传感器网络中,链路是实现节点互连和多跳通信的基本元素,链路质量是拓扑控制、路由协议和移动管理的基础,准确的链路质量预测不仅可以提高整个网络的数据吞吐率,降低节点能耗,还可延长整个网络的工作时间.在分析现有链路质量预测方法的基础上,提出一种基于模糊支持向量回归机(fuzzy support vector regression,FSVR)的链路质量预测模型,以降低噪声与孤立点对预测性能的影响.通过收集不同场景下的链路质量样本,考虑不稳定链路中数据分布的特点,该模型采用无监督模糊核聚类算法(kernel fuzzy c-means,KFCM)自动划分样本集,并获得样本隶属度;采用混沌粒子群优化算法(chaos particle swam optimization,CPSO)选择子模型参数.实验结果表明,与基于经验风险的BP神经网络相比,基于模糊支持向量回归机的链路质量预测模型具有更好的预测精度和泛化能力. 展开更多
关键词 无线传感器网络 链路质量预测 支持向量回归 模糊聚类 混沌粒子群
在线阅读 下载PDF
支持向量分类和多宽度高斯核 被引量:10
15
作者 常群 王晓龙 +2 位作者 林沂蒙 王熙照 Daniel S.Yeung 《电子学报》 EI CAS CSCD 北大核心 2007年第3期484-487,共4页
支持向量分类中,高斯核不区分样本中各个特征的重要性,显然各个特征对分类的贡献一般是不相同的.为了体现这种差别从而提高支持向量机的泛化性能,文中提出了多宽度高斯核的概念.多宽度高斯核增加了支持向量机的超级参数,进一步地,文中... 支持向量分类中,高斯核不区分样本中各个特征的重要性,显然各个特征对分类的贡献一般是不相同的.为了体现这种差别从而提高支持向量机的泛化性能,文中提出了多宽度高斯核的概念.多宽度高斯核增加了支持向量机的超级参数,进一步地,文中提出了多参数模型选择算法.算法利用误差界自动实现模型选择.通过实验验证了多宽度高斯核和多参数模型选择算法的有效性. 展开更多
关键词 支持向量 多宽度高斯 多参数模型选择 误差界
在线阅读 下载PDF
回归支持向量机的改进序列最小优化学习算法 被引量:32
16
作者 张浩然 韩正之 《软件学报》 EI CSCD 北大核心 2003年第12期2006-2013,共8页
支持向量机(support vector machine,简称SVM)是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法,提出了实现回归支持向量机的一种改进的SMO(sequential minimal optimization)算法,给出了两变量子优化... 支持向量机(support vector machine,简称SVM)是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法,提出了实现回归支持向量机的一种改进的SMO(sequential minimal optimization)算法,给出了两变量子优化问题的解析解,设计了新的工作集选择方法和停止条件,仿真实例说明,所提出的SMO算法比原始SMO算法具有更快的运算速度. 展开更多
关键词 支持向量 方法 回归 序列最小优化
在线阅读 下载PDF
基于核空间类间平均距的径向基函数—支持向量机特征选择算法 被引量:6
17
作者 黄应清 赵锴 蒋晓瑜 《计算机应用研究》 CSCD 北大核心 2012年第12期4556-4559,共4页
SVM-RFE特征选择算法的算法复杂度高,特征选择消耗时间过长,为了缩短特征选择的时间,针对径向基函数—支持向量机分类器提出了依据核空间类间平均距进行特征选择的算法。首先分析了径向基函数核参数与数据集核空间类间平均距之间的关系... SVM-RFE特征选择算法的算法复杂度高,特征选择消耗时间过长,为了缩短特征选择的时间,针对径向基函数—支持向量机分类器提出了依据核空间类间平均距进行特征选择的算法。首先分析了径向基函数核参数与数据集核空间类间平均距之间的关系,然后提出了依据单个特征对数据集的核空间类间平均距的贡献大小进行特征重要性排序的算法,最后用该算法和SVM-RFE算法分别对8个UCI数据集进行了特征选择实验。实验结果证明了该算法的正确性、有效性,而且特征选择的时间与SVM-RFE算法相比大大减小。 展开更多
关键词 支持向量 特征选择 函数 高斯径向基函数
在线阅读 下载PDF
支持向量回归机在水质预测中的应用与验证 被引量:14
18
作者 武国正 徐宗学 李畅游 《中国农村水利水电》 北大核心 2012年第1期25-29,33,共6页
以干旱区浅水湖泊乌梁素海的多年实测pH值为例,在分析支持向量回归机算法(ε-SVR)核函数选取的基础上进行了回归分析及预测,并与线性回归、BP神经网络、RBF网络等算法进行了比较。研究结果显示:①基于径向基核的支持向量回归机模拟效果... 以干旱区浅水湖泊乌梁素海的多年实测pH值为例,在分析支持向量回归机算法(ε-SVR)核函数选取的基础上进行了回归分析及预测,并与线性回归、BP神经网络、RBF网络等算法进行了比较。研究结果显示:①基于径向基核的支持向量回归机模拟效果优于其他核函数;②ε-SVR模拟结果与线性回归(LR)、BP神经网络和RBF网络等算法模拟结果相比,其拟合精度与预测精度均比其他三种方法要高。计算结果充分证明了支持向量回归机有较强的学习能力和泛化能力且该方法可以应用于水质预测研究。 展开更多
关键词 支持向量回归 函数 参数寻优 水质预测
在线阅读 下载PDF
以程海为例用支持向量机回归算法预测叶绿素a浓度 被引量:7
19
作者 许云峰 马春子 +2 位作者 霍守亮 席北斗 钱光人 《环境工程技术学报》 CAS 2012年第3期207-211,共5页
应用支持向量机回归(SVR)算法预测程海富营养化水体叶绿素a(Chl-a)的浓度,用留一法交叉验证(LOOCV)优化SVR预测模型的参数,并根据平均相对误差(MRE),讨论SVR预测模型的准确性。结果表明:用径向基核函数构建的SVR预测模型预测结果最优;SV... 应用支持向量机回归(SVR)算法预测程海富营养化水体叶绿素a(Chl-a)的浓度,用留一法交叉验证(LOOCV)优化SVR预测模型的参数,并根据平均相对误差(MRE),讨论SVR预测模型的准确性。结果表明:用径向基核函数构建的SVR预测模型预测结果最优;SVR预测模型的预测值和实测值具有很好的一致性,相关系数为0.938,MRE为12.30%。SVR预测模型的建模结果优于人工神经网络(BP-ANN)预测模型,说明SVR算法能够准确预测Chl-a浓度。 展开更多
关键词 支持向量回归(SVR) 叶绿素A 程海 径向基函数
在线阅读 下载PDF
一种支持向量逐步回归机算法研究 被引量:5
20
作者 曾绍华 魏延 +1 位作者 段廷才 曹长修 《计算机工程与应用》 CSCD 北大核心 2007年第8期78-81,共4页
支持向量机是解决非线性问题的重要工具,对多元线性回归模型和支持向量机的原始形式进行比较,拟定从样本子集的多元线性回归模型出发,逐步搜索支持向量,提出了一种建立支持向量回归机的快速算法,以降低核矩阵的规模从而降低解凸二次规... 支持向量机是解决非线性问题的重要工具,对多元线性回归模型和支持向量机的原始形式进行比较,拟定从样本子集的多元线性回归模型出发,逐步搜索支持向量,提出了一种建立支持向量回归机的快速算法,以降低核矩阵的规模从而降低解凸二次规划的复杂度;最后,分析了该算法的复杂度,并提供了一个算例。 展开更多
关键词 支持向量逐步回归 矩阵 复杂度分析
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部