期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
融合语义的个性化差分隐私轨迹发布方案
1
作者 张牙 刘凤春 +2 位作者 杨光辉 张春英 任静 《信息安全研究》 北大核心 2025年第7期670-679,共10页
轨迹数据库中包含大量用户的信息,直接将其发布可能会导致个人敏感信息的泄露.用户的位置语义信息中包含大量日常活动和访问偏好信息,现有个性化差分隐私轨迹发布方案对于位置点隐私级别的判定未考虑位置点间的语义信息,仍然存在隐私性... 轨迹数据库中包含大量用户的信息,直接将其发布可能会导致个人敏感信息的泄露.用户的位置语义信息中包含大量日常活动和访问偏好信息,现有个性化差分隐私轨迹发布方案对于位置点隐私级别的判定未考虑位置点间的语义信息,仍然存在隐私性和数据可用性之间的不平衡问题.为解决上述问题,提出一种融合语义的个性化差分隐私轨迹发布方案(PRTDP),根据用户自身轨迹的移动特性进行动态隐私级别判定.首先,提出敏感位置点判定算法.利用DBSCAN聚类算法得到用户敏感位置点.接着,提出一种个性化隐私级别划分算法.基于位置点间的语义信息构建敏感位置点关系有向图模型,设计改进的PageRank算法确定位置点的隐私级别,将相应隐私级别的拉普拉斯噪声加入轨迹数据中并发布.PRTDP方案能够有效地保护用户的敏感信息,并提高轨迹数据的可用性,实验证明该方案在隐私保护程度、可用性和时间效率3个方面优于现有方案NFRP算法和FPT算法. 展开更多
关键词 个性化差分隐私 轨迹隐私保护 PAGERANK算法 轨迹数据发布 隐私预算
在线阅读 下载PDF
一种满足个性化差分隐私的多方垂直划分数据合成机制 被引量:2
2
作者 朱友文 王珂 周玉倩 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2159-2176,共18页
当今时代,随着大数据技术的飞速发展和数据量的持续增加,大量数据不断被不同的公司或者机构收集,把来自不同公司或机构的数据聚合起来并发布,有助于更好地提供服务、支持决策。然而他们各自的数据中可能包含敏感程度不同的隐私信息,所... 当今时代,随着大数据技术的飞速发展和数据量的持续增加,大量数据不断被不同的公司或者机构收集,把来自不同公司或机构的数据聚合起来并发布,有助于更好地提供服务、支持决策。然而他们各自的数据中可能包含敏感程度不同的隐私信息,所以在聚合发布各方数据时需要满足个性化隐私保护要求。针对个性化隐私保护的多方数据聚合发布问题,该文提出满足个性化差分隐私的多方垂直划分数据合成机制(PDP-MVDS)。该机制通过生成低维边缘分布实现对高维数据的降维,用低维边缘分布更新随机初始的数据集,最终发布和各方的真实聚合数据集分布近似的合成数据集;同时通过划分隐私预算实现个性化差分隐私保护,利用安全点积协议和门限Paillier加密保证各方数据在聚合过程中的隐私性,利用分布式拉普拉斯机制有效保护了多方聚合边缘分布的隐私。该文通过严格的理论分析证明了PDP-MVDS能够确保每个参与方数据和发布数据集的安全。最后,在公开数据集上进行了实验评估,实验结果表明PDP-MVDS机制能够以低开销生成高效用的多方合成数据集。 展开更多
关键词 隐私保护 多方数据发布 安全多方计算 个性化差分隐私 垂直划分数据
在线阅读 下载PDF
满足个性化差分隐私的社交网络图生成方法 被引量:2
3
作者 高瑞 陈学斌 +1 位作者 谷铮 邹元怀 《太原理工大学学报》 北大核心 2024年第1期163-171,共9页
【目的】针对现有本地化差分隐私社交网络图生成算法中直接扰动邻居列表的方法会导致引入过多噪声且隐私保护程度不均衡的问题,提出了一种满足个性化的本地差分隐私社交网络图生成方法(GPDP)。【方法】首先,使用传统的社区发现算法Louv... 【目的】针对现有本地化差分隐私社交网络图生成算法中直接扰动邻居列表的方法会导致引入过多噪声且隐私保护程度不均衡的问题,提出了一种满足个性化的本地差分隐私社交网络图生成方法(GPDP)。【方法】首先,使用传统的社区发现算法Louvain对原始社交网络图进行划分,保留社区信息;其次,对于划分后的社区根据其社区内部平均权重度比值作为新的隐私预算参数分配给每个节点;然后,每个节点根据新的隐私预算各自扰动其邻居列表,同时利用随机邻接位向量(RABV)方法降低通讯成本;最后合并邻居列表形成生成图。【结果】通过在真实数据集上的实验结果表明,该算法在发布合成图数据时保证了数据隐私性和可用性的均衡,同时保留了更多的社区结构信息。 展开更多
关键词 个性化差分隐私 社交网络 隐私保护 合成图生成
在线阅读 下载PDF
面向轨迹数据发布的个性化差分隐私保护机制 被引量:23
4
作者 田丰 吴振强 +2 位作者 鲁来凤 刘海 桂小林 《计算机学报》 EI CAS CSCD 北大核心 2021年第4期709-723,共15页
移动互联网和智能手机的普及大大方便了人们的生活,并由此产生了大量的轨迹数据.通过对发布的轨迹数据进行分析,能够有效提高基于位置服务的质量,进而推动智慧城市相关应用的发展,例如智能交通管理、基础设计规划以及道路拥塞预警与检测... 移动互联网和智能手机的普及大大方便了人们的生活,并由此产生了大量的轨迹数据.通过对发布的轨迹数据进行分析,能够有效提高基于位置服务的质量,进而推动智慧城市相关应用的发展,例如智能交通管理、基础设计规划以及道路拥塞预警与检测.然而,由于轨迹数据中包含用户的敏感信息,直接发布原始的轨迹数据会对个人隐私造成严重威胁.差分隐私作为一种具备严格形式化定义、强隐私性保证的安全机制,已经被广泛应用于轨迹数据的发布中.但是,现有的方法假定用户具有相同的隐私偏好,并且为所有用户提供相同级别的隐私保护,这会导致对某些用户提供的隐私保护级别不足,而某些用户则获得过多的隐私保护.为满足不同用户的隐私保护需求,提高数据可用性,本文假设用户具备不同的隐私需求,提出了一种面向轨迹数据的个性化差分隐私发布机制.该机制利用Hilbert曲线提取轨迹数据在各个时刻的分布特征,生成位置聚簇,使用抽样机制和指数机制选择各个位置聚簇的代表元,进而利用位置代表元对原始轨迹数据进行泛化,从而生成待发布轨迹数据.在真实轨迹数据集上的实验表明,与基于标准差分隐私的方法相比,本文提出的机制在隐私保护和数据可用性之间提供了更好的平衡. 展开更多
关键词 个性化差分隐私 HILBERT曲线 抽样机制 轨迹数据发布
在线阅读 下载PDF
个性化本地差分隐私机制的研究现状与展望 被引量:1
5
作者 朱友文 唐聪 +1 位作者 吴启晖 张焱 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第5期784-800,共17页
本地差分隐私作为一个优秀的隐私保护模型,被广泛应用于数据收集和统计分析中的隐私保护问题。但是本地差分隐私没有考虑不同用户的隐私需求差异以及不同数据的属性差异,因此作为本地差分隐私的一种变体,个性化本地差分隐私被提出。本... 本地差分隐私作为一个优秀的隐私保护模型,被广泛应用于数据收集和统计分析中的隐私保护问题。但是本地差分隐私没有考虑不同用户的隐私需求差异以及不同数据的属性差异,因此作为本地差分隐私的一种变体,个性化本地差分隐私被提出。本文根据上述两类差异将个性化本地差分隐私机制分为两类,并在此基础上对该领域的研究现状进行了分析和总结。首先本文介绍了个性化本地差分隐私的基本概念和理论模型。其次对近年来的个性化本地差分隐私机制的若干文献进行了分析和归类,并详细介绍了几种代表性方案的原理和特点,包括数据扰动方法和数据聚合方法等。最后本文对该领域的未来发展方向进行了讨论与分析。 展开更多
关键词 数据安全 个性化本地差分隐私 统计分析 隐私保护
在线阅读 下载PDF
车联网中基于位置服务的个性化位置隐私保护 被引量:17
6
作者 徐川 丁颖祎 +3 位作者 罗丽 刘帅军 刘立祥 赵国锋 《软件学报》 EI CSCD 北大核心 2022年第2期699-716,共18页
随着车联网的快速发展,用户享受车联网提供的位置服务(location-based services,LBSs)时,位置隐私泄漏是一个关键安全问题.针对车载网络中位置服务隐私泄露问题,提出了一种基于差分隐私的个性化位置隐私保护方案,在保护用户隐私的前提下... 随着车联网的快速发展,用户享受车联网提供的位置服务(location-based services,LBSs)时,位置隐私泄漏是一个关键安全问题.针对车载网络中位置服务隐私泄露问题,提出了一种基于差分隐私的个性化位置隐私保护方案,在保护用户隐私的前提下,满足用户个性化隐私需求.首先,定义归一化的决策矩阵,描述导航推荐路线的效率和隐私效果;然后,引入多属性理论,建立效用模型,将用户的隐私偏好整合到该模型中,为用户选择效益最佳的驾驶路线;最后,考虑到用户的隐私偏好需求,以距离占比为衡量指标,为用户分配合适的隐私预算,并确定虚假位置的生成范围,以生成效用最高的服务请求位置.基于真实数据集,通过仿真实验,将所提方案与现有方案进行对比,实验结果表明:所提出的个性化位置隐私保护方案在合理保护用户隐私的情况下,能够满足用户的服务需求,以提供更高的服务质量(quality of service,QoS). 展开更多
关键词 个性化差分隐私 隐私预算分配 最优路径 服务质量
在线阅读 下载PDF
PLDP:收集和分析多维数据的个性化LDP
7
作者 谷香 李艳辉 +2 位作者 袁野 李新玲 王国仁 《计算机科学与探索》 CSCD 北大核心 2023年第4期964-972,共9页
众包应用的普及加速了企业的发展,随之而来的隐私泄露问题已经成为公众关注的焦点。现有的本地化差分隐私(LDP)机制主要关注单个隐私级别的效用优化,这会导致某些用户因提供的隐私保护级别不足拒绝共享数据,而某些用户则获得过多的隐私... 众包应用的普及加速了企业的发展,随之而来的隐私泄露问题已经成为公众关注的焦点。现有的本地化差分隐私(LDP)机制主要关注单个隐私级别的效用优化,这会导致某些用户因提供的隐私保护级别不足拒绝共享数据,而某些用户则获得过多的隐私保护。为满足用户不同的隐私保护需求,针对收集和分析多维混合型数据提出一种个性化本地差分隐私(PLDP)机制,为用户提供多个隐私保护级别。具体来说,提出一个个性化用户数据扰动框架,该框架针对数值型数据和分类型数据分别执行个性化的均值估计算法和频率估计算法,并通过理论分析证明算法的保密性和有效性。另外,提出一个个性化的采样方案,该方案根据服务器端的偏好对属性标签进行预处理,并按照其收集偏好对数据维度进行有偏采样。在两个真实数据集上的实验表明,与传统的LDP机制相比,提出的机制在保证用户数据隐私的同时,降低了收集数值型数据和分类型数据的统计误差,因此在隐私保护和数据可用性之间提供了更好的平衡。 展开更多
关键词 本地化差分隐私(LDP) 个性化本地差分隐私(PLDP) 数值型数据 分类型数据 众包
在线阅读 下载PDF
基于Skyline计算的社交网络关系数据隐私保护 被引量:7
8
作者 张书旋 康海燕 闫涵 《计算机应用》 CSCD 北大核心 2019年第5期1394-1399,共6页
随着社交软件的流行,越来越多的人加入社交网络产生了大量有价值的信息,其中也包含了许多敏感隐私信息。不同的用户有不同的隐私需求,因此需要不同级别的隐私保护。社交网络中用户隐私泄露等级受社交网络图结构和用户自身威胁等级等诸... 随着社交软件的流行,越来越多的人加入社交网络产生了大量有价值的信息,其中也包含了许多敏感隐私信息。不同的用户有不同的隐私需求,因此需要不同级别的隐私保护。社交网络中用户隐私泄露等级受社交网络图结构和用户自身威胁等级等诸多因素的影响。针对社交网络数据的个性化隐私保护问题及用户隐私泄露等级评价问题,提出基于Skyline计算的个性化差分隐私保护策略(PDPS)用以发布社交网络关系数据。首先构建用户的属性向量;接着采用基于Skyline计算的方法评定用户的隐私泄露等级,并根据该等级对用户数据集进行分割;然后应用采样机制来实现个性化差分隐私,并对整合后的数据添加噪声;最后对处理后数据进行安全性和实用性的分析并发布数据。在真实数据集上与传统的个性化差分隐私方法(PDP)对比,验证了PDPS算法的隐私保护质量和数据的可用性都优于PDP算法。 展开更多
关键词 社交网络 隐私保护 SKYLINE计算 个性化差分隐私 基于Skyline计算的个性化差分隐私保护算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部