Many digital platforms have employed free-content promotion strategies to deal with the high uncertainty levels regarding digital content products.However,the diversity of digital content products and user heterogenei...Many digital platforms have employed free-content promotion strategies to deal with the high uncertainty levels regarding digital content products.However,the diversity of digital content products and user heterogeneity in content preference may blur the impact of platform promotions across users and products.Therefore,free-content promotion strategies should be adapted to allocate marketing resources optimally and increase revenue.This study develops personal-ized free-content promotion strategies based on individual-level heterogeneous treatment effects and explores the causes of their heterogeneity,focusing on the moderating effect of user engagement-related variables.To this end,we utilize ran-dom field experimental data provided by a top Chinese e-book platform.We employ a framework that combines machine learning with econometric causal inference methods to estimate individual treatment effects and analyze their potential mechanisms.The analysis shows that,on average,free-content promotions lead to a significant increase in consumer pay-ments.However,the higher the level of user engagement,the lower the payment lift caused by promotions,as more-engaged users are more strongly affected by the cannibalization effect of free-content promotion.This study introduces a novel causal research design to help platforms improve their marketing strategies.展开更多
文摘因果推断可以帮助人们制定更加合理的决策方案,在电子商务和精准医学等领域有广泛的应用,其性能严重依赖对个体因果效应(Individual Treatment Effect,ITE)的准确估计,观察数据中存在的选择偏差与样本数量不一致问题都会影响ITE估计的准确性.对于选择偏差问题,现有的深度学习方法主要通过平衡所有协变量来进行缓解,但平衡协变量中与处理无关的噪声变量会导致对个体因果效应的估计不准确.对于样本数量不一致问题,这些方法主要通过在损失函数中添加样本权重来进行缓解,但其不能有效提升模型预测的准确性.提出一种基于深度表示学习的方法,通过g^(nn)和IPM(Integral Probability Metric)网络共同诱导神经网络得到协变量中非噪声变量的平衡共享表示,然后引入X-Net来缓解样本数量不一致问题.在半合成与真实数据集上的实验结果表明,提出的算法可以通过缓解样本选择偏差与样本数量不一致问题来提高模型ITE估计的准确性.
基金supported by the Anhui Postdoctoral Scientific Research Program Foundation(2022B579).
文摘Many digital platforms have employed free-content promotion strategies to deal with the high uncertainty levels regarding digital content products.However,the diversity of digital content products and user heterogeneity in content preference may blur the impact of platform promotions across users and products.Therefore,free-content promotion strategies should be adapted to allocate marketing resources optimally and increase revenue.This study develops personal-ized free-content promotion strategies based on individual-level heterogeneous treatment effects and explores the causes of their heterogeneity,focusing on the moderating effect of user engagement-related variables.To this end,we utilize ran-dom field experimental data provided by a top Chinese e-book platform.We employ a framework that combines machine learning with econometric causal inference methods to estimate individual treatment effects and analyze their potential mechanisms.The analysis shows that,on average,free-content promotions lead to a significant increase in consumer pay-ments.However,the higher the level of user engagement,the lower the payment lift caused by promotions,as more-engaged users are more strongly affected by the cannibalization effect of free-content promotion.This study introduces a novel causal research design to help platforms improve their marketing strategies.