期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于两阶段注意力层Transformer的弹道目标多站融合识别
1
作者 翟相龙 王旋 +1 位作者 王雁冰 王峰 《现代雷达》 CSCD 北大核心 2024年第7期37-44,共8页
多站弹道目标融合识别旨在利用多个雷达站点信息的互补性提升弹道目标识别性能,而传统多站下弹道目标识别方法未直接考虑多站数据间的关联特性,难以取得准确、稳健的识别性能。针对多站下基于雷达散射截面积(RCS)高速飞行目标的识别问题... 多站弹道目标融合识别旨在利用多个雷达站点信息的互补性提升弹道目标识别性能,而传统多站下弹道目标识别方法未直接考虑多站数据间的关联特性,难以取得准确、稳健的识别性能。针对多站下基于雷达散射截面积(RCS)高速飞行目标的识别问题,提出了一种基于两阶段注意力的弹道目标多站融合识别方法。首先,在现有的Transformer模型上添加维度分段模块将多站雷达数据嵌入于二维向量中,保留站内数据时序及站间关联信息;然后,添加了两阶段注意力层,有效地捕获站内时序信息及跨站维度的依赖关系;最后,基于仿真动态RCS数据模拟多站场景开展了融合识别实验。实验结果表明该方法能够有效提升多站条件下的弹道目标识别性能。 展开更多
关键词 雷达散射截面 多站融合弹道目标识别 Transformer模型 两阶段注意力
在线阅读 下载PDF
融合局部特征与两阶段注意力权重学习的面部表情识别 被引量:10
2
作者 郑剑 郑炽 +1 位作者 刘豪 于祥春 《计算机应用研究》 CSCD 北大核心 2022年第3期889-894,918,共7页
面部的局部细节信息在面部表情识别中扮演重要角色,然而现有的方法大多只关注面部表情的高层语义信息而忽略了局部面部区域的细粒度信息。针对这一问题,提出一种融合局部特征与两阶段注意力权重学习的深度卷积神经网络FLF-TAWL(deep con... 面部的局部细节信息在面部表情识别中扮演重要角色,然而现有的方法大多只关注面部表情的高层语义信息而忽略了局部面部区域的细粒度信息。针对这一问题,提出一种融合局部特征与两阶段注意力权重学习的深度卷积神经网络FLF-TAWL(deep convolutional neural network fusing local feature and two-stage attention weight learning),它能自适应地捕捉重要的面部区域从而提升面部表情识别的有效性。该FLF-TAWL由双分支框架构成,一个分支从图像块中提取局部特征,另一个分支从整个表情图像中提取全局特征。首先提出了两阶段注意力权重学习策略,第一阶段粗略学习全局和局部特征的重要性权重,第二阶段进一步细化注意力权重,并将局部和全局特征进行融合;其次,采用一种区域偏向损失函数鼓励最重要的区域以获得较高的注意力权重。在FERPlus、Cohn-Kanada(CK+)以及JAFFE三个数据集上进行了广泛实验,分别获得90.92%、98.90%、97.39%的准确率,实验结果验证了FLF-TAWL模型的有效性和可行性。 展开更多
关键词 面部表情识别 深度卷积神经网络 局部特征融合 两阶段注意力权重学习 区域偏向损失
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部