为了研究限矩型液力偶合器内部气液两相分布规律和转矩特性,以YOX500型限矩型液力偶合器为分析模型,采用流体体积法VOF(Volume of fluid)两相流模型,Realizable k-ε湍流模型和压力隐式算子分裂(Pressure-implicit with splitting of op...为了研究限矩型液力偶合器内部气液两相分布规律和转矩特性,以YOX500型限矩型液力偶合器为分析模型,采用流体体积法VOF(Volume of fluid)两相流模型,Realizable k-ε湍流模型和压力隐式算子分裂(Pressure-implicit with splitting of operators, PISO)压力耦合算法对不同充液率、不同工况下的偶合器内部流场进行瞬态模拟。结果表明:随着转速比的降低,偶合器内部环流逐渐由小环流变为大环流,80%充液率的条件下,泵轮叶片吸力面与压力面上的气液两相分布与试验结果基本一致,证明了该方法的有效性。在高转速比时,转矩特性与试验一致,低转速比时误差较大,该方法不再适用。展开更多
The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further cause...The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.展开更多
文摘为了研究限矩型液力偶合器内部气液两相分布规律和转矩特性,以YOX500型限矩型液力偶合器为分析模型,采用流体体积法VOF(Volume of fluid)两相流模型,Realizable k-ε湍流模型和压力隐式算子分裂(Pressure-implicit with splitting of operators, PISO)压力耦合算法对不同充液率、不同工况下的偶合器内部流场进行瞬态模拟。结果表明:随着转速比的降低,偶合器内部环流逐渐由小环流变为大环流,80%充液率的条件下,泵轮叶片吸力面与压力面上的气液两相分布与试验结果基本一致,证明了该方法的有效性。在高转速比时,转矩特性与试验一致,低转速比时误差较大,该方法不再适用。
基金Project(2011CB706606) supported by the National Basic Research of ChinaProject(51405375) supported by the National Natural Science Foundation of China
文摘The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.