期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于自适应加权的鲁棒联邦学习算法 被引量:2
1
作者 张连福 谭作文 《计算机科学》 CSCD 北大核心 2023年第S01期799-807,共9页
联邦学习(Federated Learning,FL)允许多个数据所有者联合训练机器学习模型,而无需他们共享私有训练数据。然而,研究表明,FL容易同时遭受拜占庭攻击和隐私泄露威胁,现有的研究都没有很好地解决这一问题。在联邦学习场景中,保护FL免受拜... 联邦学习(Federated Learning,FL)允许多个数据所有者联合训练机器学习模型,而无需他们共享私有训练数据。然而,研究表明,FL容易同时遭受拜占庭攻击和隐私泄露威胁,现有的研究都没有很好地解决这一问题。在联邦学习场景中,保护FL免受拜占庭攻击,同时考虑性能、效率、隐私、攻击者数量、简单可行等问题,是一个极具挑战性的问题。为解决这一问题,基于l 2范数和两次归一化方法提出了一种隐私保护鲁棒联邦学习算法DP-FedAWA。提出的算法不需要训练过程之外的任何假设,并且可以自适应地处理少量和大量的攻击者。无防御设置下选用DP-FedAvg作为比较基线,防御设置下选用Krum和Median作为比较基线。MedMNIST2D数据集上的广泛实验证实了,DP-FedAWA算法是安全的,对恶意客户端具有很好的鲁棒性,在Accuracy,Precision,Recall和F1-Score等性能指标上全面优于现有的Krum和Median算法。 展开更多
关键词 自适应加权 l 2范数距离 两次归一化 拜占庭攻击 鲁棒联邦学习 差分隐私
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部