应用因子分解法、简单同余法以及前人的已知结果证明了:(1)设p是1个奇素数,则丢番图方程组x+1=3py21,x2-x+1=3y22,(y1,y2)=1,y1>0,y2>0,无正整数解x,p,y1,y2;(2)丢番图方程x3+1=py2(其中p≡-1(mod 3)为素数)仅有整数解(x,y)=(-1,0...应用因子分解法、简单同余法以及前人的已知结果证明了:(1)设p是1个奇素数,则丢番图方程组x+1=3py21,x2-x+1=3y22,(y1,y2)=1,y1>0,y2>0,无正整数解x,p,y1,y2;(2)丢番图方程x3+1=py2(其中p≡-1(mod 3)为素数)仅有整数解(x,y)=(-1,0);(3)丢番图方程x3-1=py2(其中p≡-1(m od 3)为素数)仅有整数解(x,y)=(1,0).展开更多
设D=∏r+i(n∈Z),ri≡5 mod 6(1≤i≤n)为彼此不相同的奇素数,p≡1 mod 6为奇素数,关于丢番i=1图方程x3±1=2pDy2的初等解法至今仍未解决.运用Pell方程的解的性质、同余式、平方剩余、递归序列等讨论了丢番图方程x3±1=2pDy2的...设D=∏r+i(n∈Z),ri≡5 mod 6(1≤i≤n)为彼此不相同的奇素数,p≡1 mod 6为奇素数,关于丢番i=1图方程x3±1=2pDy2的初等解法至今仍未解决.运用Pell方程的解的性质、同余式、平方剩余、递归序列等讨论了丢番图方程x3±1=2pDy2的整数解的情况.展开更多
设P=∏r+i(s∈Z),ri≡-1 mod 6(1≤i≤s)为彼此不相同的奇素数,q≡1 mod 6为奇素数,关于丢番i=1图方程x3±1=3qPy2的整数解目前只有部分结果.运用Pell方程的解的性质、同余式、递归序列等讨论了丢番图方程x3±1=3q Py2的整数解...设P=∏r+i(s∈Z),ri≡-1 mod 6(1≤i≤s)为彼此不相同的奇素数,q≡1 mod 6为奇素数,关于丢番i=1图方程x3±1=3qPy2的整数解目前只有部分结果.运用Pell方程的解的性质、同余式、递归序列等讨论了丢番图方程x3±1=3q Py2的整数解的情况,从而推进了该类丢番图方程的研究.展开更多
0 The Diophantine equation X^(2p)-Dy^2=1Let D be a positive integer which is square free,and p be a prime.In 1966,Ljunggren showed that if p=2 and D=q is a prime,then the Diophantine equationx^(2p)-Dy^2=1(1)has only p...0 The Diophantine equation X^(2p)-Dy^2=1Let D be a positive integer which is square free,and p be a prime.In 1966,Ljunggren showed that if p=2 and D=q is a prime,then the Diophantine equationx^(2p)-Dy^2=1(1)has only positive integer solutions(q,x,y)=(5,3,4),(29,99,1820).In 1979,KoChao and Sun Qi showed that if p=2 and D=2q,then Eq.(1)has no positive inte-展开更多
文摘应用因子分解法、简单同余法以及前人的已知结果证明了:(1)设p是1个奇素数,则丢番图方程组x+1=3py21,x2-x+1=3y22,(y1,y2)=1,y1>0,y2>0,无正整数解x,p,y1,y2;(2)丢番图方程x3+1=py2(其中p≡-1(mod 3)为素数)仅有整数解(x,y)=(-1,0);(3)丢番图方程x3-1=py2(其中p≡-1(m od 3)为素数)仅有整数解(x,y)=(1,0).
文摘设P=∏r+i(s∈Z),ri≡-1 mod 6(1≤i≤s)为彼此不相同的奇素数,q≡1 mod 6为奇素数,关于丢番i=1图方程x3±1=3qPy2的整数解目前只有部分结果.运用Pell方程的解的性质、同余式、递归序列等讨论了丢番图方程x3±1=3q Py2的整数解的情况,从而推进了该类丢番图方程的研究.
文摘0 The Diophantine equation X^(2p)-Dy^2=1Let D be a positive integer which is square free,and p be a prime.In 1966,Ljunggren showed that if p=2 and D=q is a prime,then the Diophantine equationx^(2p)-Dy^2=1(1)has only positive integer solutions(q,x,y)=(5,3,4),(29,99,1820).In 1979,KoChao and Sun Qi showed that if p=2 and D=2q,then Eq.(1)has no positive inte-