期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CBAM-YOLOv4的东巴象形文识别方法研究
1
作者
黄颢
吴国新
+1 位作者
徐小力
赵西伟
《计算机应用与软件》
北大核心
2025年第2期196-201,226,共7页
东巴象形文字是中国早期使用的一种象形文字,对该文字的识别和数字化保护等方面的研究对传承我国文化具有深远意义。针对从东巴古籍提取的象形文字结构复杂、存在异体字、记录该文字的特殊东巴纸的纹理特征干扰识别的情况,提出一种基于C...
东巴象形文字是中国早期使用的一种象形文字,对该文字的识别和数字化保护等方面的研究对传承我国文化具有深远意义。针对从东巴古籍提取的象形文字结构复杂、存在异体字、记录该文字的特殊东巴纸的纹理特征干扰识别的情况,提出一种基于CBAM-YOLOv4的图像识别改进算法,该算法添加注意力机制模块CBAM(Convolutional Block Attention Module)和特征融合模块,通过CBAM中的通道和空间注意力子模块依次对图像推断出注意力图,并结合特征融模块对输入的东巴象形文字图片进行更深的特征提取,从而实现对YOLOv4图像检测识别算法的优化。将改进后的CBAM-YOLOv4算法应用于东巴象形文字识别,相比YOLOv4算法mAP值提高了4.42百分点,表明该算法具有较好的东巴文字识别性能。
展开更多
关键词
东巴文识别
YOLOv4
CBAM
特征提取
在线阅读
下载PDF
职称材料
题名
基于CBAM-YOLOv4的东巴象形文识别方法研究
1
作者
黄颢
吴国新
徐小力
赵西伟
机构
北京信息科技大学机电学院现代测控技术教育部重点实验室
出处
《计算机应用与软件》
北大核心
2025年第2期196-201,226,共7页
基金
国家重点研发计划项目(2020YFB1713200)
北京市教委科研计划项目(KM202011232001)。
文摘
东巴象形文字是中国早期使用的一种象形文字,对该文字的识别和数字化保护等方面的研究对传承我国文化具有深远意义。针对从东巴古籍提取的象形文字结构复杂、存在异体字、记录该文字的特殊东巴纸的纹理特征干扰识别的情况,提出一种基于CBAM-YOLOv4的图像识别改进算法,该算法添加注意力机制模块CBAM(Convolutional Block Attention Module)和特征融合模块,通过CBAM中的通道和空间注意力子模块依次对图像推断出注意力图,并结合特征融模块对输入的东巴象形文字图片进行更深的特征提取,从而实现对YOLOv4图像检测识别算法的优化。将改进后的CBAM-YOLOv4算法应用于东巴象形文字识别,相比YOLOv4算法mAP值提高了4.42百分点,表明该算法具有较好的东巴文字识别性能。
关键词
东巴文识别
YOLOv4
CBAM
特征提取
Keywords
Dongba text recognition
YOLOv4
CBAM
Feature extraction
分类号
TP39 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CBAM-YOLOv4的东巴象形文识别方法研究
黄颢
吴国新
徐小力
赵西伟
《计算机应用与软件》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部