To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service(QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modi...To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service(QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modified K-Singular Value Decomposition(K-SVD) method for multimedia identification. After analyzing several instances of typical Internet multimedia traffic captured in a campus network, this paper defines a new set of QoS classes according to the difference in downstream/upstream rates and proposes a modified K-SVD method that can automatically search for underlying structural patterns in the QoS characteristic space. We define bagQoS-words as the set of specific QoS local patterns, which can be expressed by core QoS characteristics. After the dictionary is constructed with an excess quantity of bag-QoSwords, Locality Constrained Feature Coding(LCFC) features of QoS classes are extracted. By associating a set of characteristics with a percentage of error, an objective function is formulated. In accordance with the modified K-SVD, Internet multimedia traffic can be classified into a corresponding QoS class with a linear Support Vector Machines(SVM) clas-sifier. Our experimental results demonstrate the feasibility of the proposed classification method.展开更多
With the growing popularity of data-intensive services on the Internet, the traditional process-centric model for business process meets challenges due to the lack of abilities to describe data semantics and dependenc...With the growing popularity of data-intensive services on the Internet, the traditional process-centric model for business process meets challenges due to the lack of abilities to describe data semantics and dependencies, resulting in the inflexibility of the design and implement for the processes. This paper proposes a novel data-aware business process model which is able to describe both explicit control flow and implicit data flow. Data model with dependencies which are formulated by Linear-time Temporal Logic(LTL) is presented, and their satisfiability is validated by an automaton-based model checking algorithm. Data dependencies are fully considered in modeling phase, which helps to improve the efficiency and reliability of programming during developing phase. Finally, a prototype system based on j BPM for data-aware workflow is designed using such model, and has been deployed to Beijing Kingfore heating management system to validate the flexibility, efficacy and convenience of our approach for massive coding and large-scale system management in reality.展开更多
基金supported in part by the National Natural Science Foundation of China (NO. 61401004, 61271233, 60972038)Plan of introduction and cultivation of university leading talents in Anhui (No.gxfxZ D2016013)+3 种基金the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (No. KJ2010B357)Startup Project of Anhui Normal University Doctor Scientific Research (No.2016XJJ129)the US National Science Foundation under grants CNS1702957 and ACI-1642133the Wireless Engineering Research and Education Center at Auburn University
文摘To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service(QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modified K-Singular Value Decomposition(K-SVD) method for multimedia identification. After analyzing several instances of typical Internet multimedia traffic captured in a campus network, this paper defines a new set of QoS classes according to the difference in downstream/upstream rates and proposes a modified K-SVD method that can automatically search for underlying structural patterns in the QoS characteristic space. We define bagQoS-words as the set of specific QoS local patterns, which can be expressed by core QoS characteristics. After the dictionary is constructed with an excess quantity of bag-QoSwords, Locality Constrained Feature Coding(LCFC) features of QoS classes are extracted. By associating a set of characteristics with a percentage of error, an objective function is formulated. In accordance with the modified K-SVD, Internet multimedia traffic can be classified into a corresponding QoS class with a linear Support Vector Machines(SVM) clas-sifier. Our experimental results demonstrate the feasibility of the proposed classification method.
基金supported by the National Natural Science Foundation of China (No. 61502043, No. 61132001)Beijing Natural Science Foundation (No. 4162042)BeiJing Talents Fund (No. 2015000020124G082)
文摘With the growing popularity of data-intensive services on the Internet, the traditional process-centric model for business process meets challenges due to the lack of abilities to describe data semantics and dependencies, resulting in the inflexibility of the design and implement for the processes. This paper proposes a novel data-aware business process model which is able to describe both explicit control flow and implicit data flow. Data model with dependencies which are formulated by Linear-time Temporal Logic(LTL) is presented, and their satisfiability is validated by an automaton-based model checking algorithm. Data dependencies are fully considered in modeling phase, which helps to improve the efficiency and reliability of programming during developing phase. Finally, a prototype system based on j BPM for data-aware workflow is designed using such model, and has been deployed to Beijing Kingfore heating management system to validate the flexibility, efficacy and convenience of our approach for massive coding and large-scale system management in reality.