期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ILRD:一种融合IPC_LDA和文本语义特征的专利推荐模型 被引量:1
1
作者 邓娜 林涵辉 +1 位作者 陈旭 刘树栋 《情报杂志》 北大核心 2025年第3期170-179,F0003,共11页
[研究目的]随着全球专利数量的持续增长,现有的专利推荐模型难以精准地理解专利文本中复杂的语义信息,忽视了专利的领域和主题信息,从而影响专利的准确推荐。因此,实现一个能够综合考虑多种因素的高效专利推荐模型具有重要意义。[研究方... [研究目的]随着全球专利数量的持续增长,现有的专利推荐模型难以精准地理解专利文本中复杂的语义信息,忽视了专利的领域和主题信息,从而影响专利的准确推荐。因此,实现一个能够综合考虑多种因素的高效专利推荐模型具有重要意义。[研究方法]提出了一种ILRD专利推荐模型,通过IPC语义结构化映射与LDA主题建模来表征专利的技术领域和核心主题。构建RoBERTa与DPCNN模型深入解析专利文本的复杂语义,以实现多因素融合的专利推荐。[研究结果/结论]实证研究显示,ILRD模型在半导体领域的专利推荐上,其准确率和F1得分显著超越常规模型,推荐准确率提高至86%。验证了本文方法的有效性,也为跨领域专利推荐提供了新思路。 展开更多
关键词 专利推荐 IPC LDA主题建模 预训练模型 RoBERTa DPCNN 半导体
在线阅读 下载PDF
基于属性异构网络表示学习的专利交易推荐 被引量:8
2
作者 何喜军 吴爽爽 +3 位作者 武玉英 才久然 庞婷 Chee Seng Chan 《情报学报》 CSSCI CSCD 北大核心 2022年第11期1214-1228,共15页
融合异构信息进行专利交易推荐可以促进交易,但存在因忽略专利属性而影响推荐结果的问题。本研究提出基于属性异构网络(attribute heterogeneous network,AHN)表示学习的专利交易推荐模型(patent transaction recommendation based on A... 融合异构信息进行专利交易推荐可以促进交易,但存在因忽略专利属性而影响推荐结果的问题。本研究提出基于属性异构网络(attribute heterogeneous network,AHN)表示学习的专利交易推荐模型(patent transaction recommendation based on AHN representation learning,AHNRL-PTR)。首先筛选专利和组织中影响专利交易的属性;其次构建专利交易AHN,然后在AHN中引入网络表示学习,并基于多维高斯分布解决节点表示的不确定性,基于KL散度(Kullback-Leibler divergence)解决节点间距离非对称性。最后,以粤港澳大湾区有效发明授权专利数据进行实证研究,得出结论:第一,相比于metapath2vec、TADW(text-associated DeepWalk)和AHNRL-PTR模型的两个变体方法,AHNRL-PTR模型的推荐精度最高,超过86%,说明融合组织及专利属性,并聚焦节点表示的不确定性和非对称性问题的解决,能大幅提高推荐精度;第二,在非准确指标IntraSim和Popularity上,AHNRL-PTR的表现优于metapath2vec和两个变体方法,反映该方法的推荐结果具有一定的多样性,且可以挖掘推荐冷门专利;第三,基于两个非准确指标将组织聚类为六类,分别为中介型、领域骨干型、研究型、族群型、成长型、专业型,体现了推荐结果的可解释性和个性化水平。本研究可为专利交易智能化推荐服务提供决策支持。 展开更多
关键词 属性异构网络 网络表示学习 专利交易推荐
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部