The heating and melting mechanisms of the pellets immersed in liquid slag were investigated, and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in th...The heating and melting mechanisms of the pellets immersed in liquid slag were investigated, and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in the pellet is melted from the surface and no metallic elements are melted before the dust component, the time for the pellet completely melted is reduced as the iron powder content increases since the metallic iron has high thermal conductivity. These are four stages of heating and melting of pellet in liquid slag, they are the growth and melt of solid slag shell, penetration of liquid slag, dissolving of dust component and melting of reduced metals. The lifetime of the solid slag shell is in the range of 7-16 s and increasing the pre-heating temperature of the pellet and the slag temperature can shorten the slag shell lifetime. The time for the dust component in the pellet to be melted completely is in the range of 20-45 s and increasing the pre-heating temperature, especially in the range of 600-800 ℃, can obviously reduce the melting time. A higher slag temperature can also improve the pellet melting and the melting time is reduced by 10-15 s when the slag temperature is increased from 1 450 to 1 550 ℃. The pellet with higher content of iron powder is beneficial to the melting by improving the heat conductivity.展开更多
To investigate the effects of pressure on the hot isostatic pressing(HIP) process of a stainless steel powder,density distribution and deformation of the powder at four different applied pressure levels were predicted...To investigate the effects of pressure on the hot isostatic pressing(HIP) process of a stainless steel powder,density distribution and deformation of the powder at four different applied pressure levels were predicted and compared by using finite element method(FEM).Constitutive relations of porous compacts during HIP process were derived based on the yield criterion of porous metal materials.Thermo-mechanical coupling calculations were carried out by the MSC.Marc.Densification mechanisms were studied through evolutions of relative density,equivalent plastic strain and equivalent viscoplastic strain rate for compacts.The simulation results were also compared with experimental data.The results show that the densification rate and final density of compacts increase dramatically with the increase in the applied pressure level when it is below 100 MPa during HIP process,and the creep for compacts evolves into steady stage with the improvement of density.展开更多
基金Project(50274073) supported by the National Natural Science Foundation of China project(Metallurgy 2003, CRDPJ 210038) supported by Natural Sciences and Engineering Research Council of Canada
文摘The heating and melting mechanisms of the pellets immersed in liquid slag were investigated, and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in the pellet is melted from the surface and no metallic elements are melted before the dust component, the time for the pellet completely melted is reduced as the iron powder content increases since the metallic iron has high thermal conductivity. These are four stages of heating and melting of pellet in liquid slag, they are the growth and melt of solid slag shell, penetration of liquid slag, dissolving of dust component and melting of reduced metals. The lifetime of the solid slag shell is in the range of 7-16 s and increasing the pre-heating temperature of the pellet and the slag temperature can shorten the slag shell lifetime. The time for the dust component in the pellet to be melted completely is in the range of 20-45 s and increasing the pre-heating temperature, especially in the range of 600-800 ℃, can obviously reduce the melting time. A higher slag temperature can also improve the pellet melting and the melting time is reduced by 10-15 s when the slag temperature is increased from 1 450 to 1 550 ℃. The pellet with higher content of iron powder is beneficial to the melting by improving the heat conductivity.
基金Project(2007AA03Z115) supported by the National High Technology Research and Development Program of ChinaProject(2009ZX04005-041-03) supported by the National Science and Technology Major Program of ChinaProject(2010MS046) supported by the Independent Fund of Huazhong University of Science and Technology,China
文摘To investigate the effects of pressure on the hot isostatic pressing(HIP) process of a stainless steel powder,density distribution and deformation of the powder at four different applied pressure levels were predicted and compared by using finite element method(FEM).Constitutive relations of porous compacts during HIP process were derived based on the yield criterion of porous metal materials.Thermo-mechanical coupling calculations were carried out by the MSC.Marc.Densification mechanisms were studied through evolutions of relative density,equivalent plastic strain and equivalent viscoplastic strain rate for compacts.The simulation results were also compared with experimental data.The results show that the densification rate and final density of compacts increase dramatically with the increase in the applied pressure level when it is below 100 MPa during HIP process,and the creep for compacts evolves into steady stage with the improvement of density.