在分布式多视点视频编码(distributed multi-view video coding,DMVC)数据传输过程中,编码方式不同导致K帧与WZ帧受信道误码影响也不相同,因此提出了一种DMVC整体容错传输框架,针对K帧及WZ帧特性设计了不同的容错保护传输方案并进行有...在分布式多视点视频编码(distributed multi-view video coding,DMVC)数据传输过程中,编码方式不同导致K帧与WZ帧受信道误码影响也不相同,因此提出了一种DMVC整体容错传输框架,针对K帧及WZ帧特性设计了不同的容错保护传输方案并进行有效融合。针对K帧的容错传输问题,首先根据左、右相邻视点的对应K帧,利用DIBR算法产生的空间边信息对丢失块进行初始修复;然后根据K帧同一视点内的相邻已解码帧,生成它的时间参考帧,对K帧的丢失块进行重修复。针对WZ帧的容错传输问题,提出了基于不等错误保护(unequal error protection,UEP)的编码算法,根据不同频带的各个比特面的重要性不同,对低频带、高比特面进行更加合理的码率分配,在不增加编码端复杂度的前提下提高了WZ帧的误码容错性能。实验结果表明:在K帧和WZ帧均出现丢包的情况下(丢包率为5%~15%),相比K帧采用传统的帧内错误隐藏加WZ帧采用参考文献码率的算法,本文方案对视频序列重建图像的BD-PSNR平均提升了2.39~4.68 d B,且随着丢包率的增加,提升效果更加显著。展开更多
为了提高MLC NAND Flash的抗误码性能,该文提出一种基于优化缩短极化码的MLC NAND Flash差错控制方法。优化缩短极化码通过优化删减图样得到,首先通过比特翻转重排序的方式得到基本删减图样,进而选择具有更低信道容量的冻结比特组成优...为了提高MLC NAND Flash的抗误码性能,该文提出一种基于优化缩短极化码的MLC NAND Flash差错控制方法。优化缩短极化码通过优化删减图样得到,首先通过比特翻转重排序的方式得到基本删减图样,进而选择具有更低信道容量的冻结比特组成优化删减图样,使得到的删减比特全为冻结比特,可以显著提高删减算法的纠错性能。同时,根据MLC单元错误的不对称性,采用码率自适应的码字对FLASH中MSB和LSB进行不等错误保护。仿真结果表明:当误帧率为310-时,优化缩短极化码较相同码长的LDPC码和基本缩短极化码分别约有3.72~5.89 d B和1.47~3.49 d B增益;相比基于同一码率的优化缩短极化码方案,不等错误保护的差错控制方案获得约0.25 d B增益。展开更多
文摘在分布式多视点视频编码(distributed multi-view video coding,DMVC)数据传输过程中,编码方式不同导致K帧与WZ帧受信道误码影响也不相同,因此提出了一种DMVC整体容错传输框架,针对K帧及WZ帧特性设计了不同的容错保护传输方案并进行有效融合。针对K帧的容错传输问题,首先根据左、右相邻视点的对应K帧,利用DIBR算法产生的空间边信息对丢失块进行初始修复;然后根据K帧同一视点内的相邻已解码帧,生成它的时间参考帧,对K帧的丢失块进行重修复。针对WZ帧的容错传输问题,提出了基于不等错误保护(unequal error protection,UEP)的编码算法,根据不同频带的各个比特面的重要性不同,对低频带、高比特面进行更加合理的码率分配,在不增加编码端复杂度的前提下提高了WZ帧的误码容错性能。实验结果表明:在K帧和WZ帧均出现丢包的情况下(丢包率为5%~15%),相比K帧采用传统的帧内错误隐藏加WZ帧采用参考文献码率的算法,本文方案对视频序列重建图像的BD-PSNR平均提升了2.39~4.68 d B,且随着丢包率的增加,提升效果更加显著。
文摘为了提高MLC NAND Flash的抗误码性能,该文提出一种基于优化缩短极化码的MLC NAND Flash差错控制方法。优化缩短极化码通过优化删减图样得到,首先通过比特翻转重排序的方式得到基本删减图样,进而选择具有更低信道容量的冻结比特组成优化删减图样,使得到的删减比特全为冻结比特,可以显著提高删减算法的纠错性能。同时,根据MLC单元错误的不对称性,采用码率自适应的码字对FLASH中MSB和LSB进行不等错误保护。仿真结果表明:当误帧率为310-时,优化缩短极化码较相同码长的LDPC码和基本缩短极化码分别约有3.72~5.89 d B和1.47~3.49 d B增益;相比基于同一码率的优化缩短极化码方案,不等错误保护的差错控制方案获得约0.25 d B增益。