Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the firs...Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the first is to design controllers for the nominal system and make the system asymptotically stabi1ize at the expected equilibrium point; the second is to construct closed-loop nominal system based on the first step, then design robust controller to make the error of state between the origina1 system and the nominal system converge to zero, thereby a dynamic controller with the constructed closed-loop nominal system served as interior dynamic is obtained. A numerical simulation verifies the correctness of the design method.展开更多
The present research relies on a cascade control approach through the Monte-Carlo based method in the presence of uncertainties to evaluate the performance of the real overactuated space systems.A number of potential ...The present research relies on a cascade control approach through the Monte-Carlo based method in the presence of uncertainties to evaluate the performance of the real overactuated space systems.A number of potential investigations in this area are first considered to prepare an idea with respect to state-of-the-art.The insight proposed here is organized to present attitude cascade control approach including the low thrust in connection with the high thrust to be implemented,while the aforementioned Monte-Carlo based method is carried out to guarantee the approach performance.It is noted that the investigated outcomes are efficient to handle a class of space systems presented via the center of mass and the moments of inertial.And also a number of profiles for the thrust vector and the misalignments as the disturbances all vary in its span of nominal variations.The acquired results are finally analyzed in line with some well-known benchmarks to verify the approach efficiency.The key core of finding in the research is to propose a novel 3-axis control approach to deal with all the mentioned uncertainties of space systems under control,in a synchronous manner,as long as the appropriate models in the low-high thrusts are realized.展开更多
文摘Based on Lyapunov stability theory, a design method for the robust stabilization problem of a class of nonlinear systems with uncertain parameters is presented. The design procedure is divided into two steps: the first is to design controllers for the nominal system and make the system asymptotically stabi1ize at the expected equilibrium point; the second is to construct closed-loop nominal system based on the first step, then design robust controller to make the error of state between the origina1 system and the nominal system converge to zero, thereby a dynamic controller with the constructed closed-loop nominal system served as interior dynamic is obtained. A numerical simulation verifies the correctness of the design method.
文摘The present research relies on a cascade control approach through the Monte-Carlo based method in the presence of uncertainties to evaluate the performance of the real overactuated space systems.A number of potential investigations in this area are first considered to prepare an idea with respect to state-of-the-art.The insight proposed here is organized to present attitude cascade control approach including the low thrust in connection with the high thrust to be implemented,while the aforementioned Monte-Carlo based method is carried out to guarantee the approach performance.It is noted that the investigated outcomes are efficient to handle a class of space systems presented via the center of mass and the moments of inertial.And also a number of profiles for the thrust vector and the misalignments as the disturbances all vary in its span of nominal variations.The acquired results are finally analyzed in line with some well-known benchmarks to verify the approach efficiency.The key core of finding in the research is to propose a novel 3-axis control approach to deal with all the mentioned uncertainties of space systems under control,in a synchronous manner,as long as the appropriate models in the low-high thrusts are realized.