期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CVT-RegNet构建MRI下胶质瘤P53基因状态预测模型
1
作者 赵钰琳 梁峰宁 +4 位作者 曹亚茹 赵藤 王淋 丁世飞 朱红 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期542-551,共10页
P53基因状态是胶质瘤精准诊疗的重要依据.针对目前基于MRI(Magnetic Resonance Imaging)的P53基因状态预测的深度学习模型中存在的异质性特征提取不全面、模型存在固有的多种不确定性等问题,提出脑胶质瘤P53基因状态精准预测模型CVT-Reg... P53基因状态是胶质瘤精准诊疗的重要依据.针对目前基于MRI(Magnetic Resonance Imaging)的P53基因状态预测的深度学习模型中存在的异质性特征提取不全面、模型存在固有的多种不确定性等问题,提出脑胶质瘤P53基因状态精准预测模型CVT-RegNet(Improved RegNet Integrating CNN,Vision Transfomer and Truth Discovery).首先,采用RegNet网络作为P53基因突变状态预测模型的基础架构,自适应设计搜索P53基因的异质性特征;其次,在模型中将ViT(Vision Transfomer)模块与卷积神经网络(Convolutional Neural Networks,CNN)模块进行融合以改进RegNet网络,进一步优化模型的特征提取性能与计算效率;最后,融入真值发现算法进行迭代寻优以改善模型输出的不确定性,提高预测结果的准确度.实验结果表明,CVT-RegNet模型对P53突变状态的预测准确率达到95.06%,AUC(Area under Curve)得分为0.9492,优于现有的P53基因状态预测模型.CVT-RegNet实现了胶质瘤P53基因状态的无创预测,减轻了患者的经济负担及身心伤害,为胶质瘤的临床精准诊断治疗提供了重要价值. 展开更多
关键词 脑胶质瘤 P53 深度学习 真值发现 不确定性校准
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部