期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
L_(2,1)范数正则化的不相关判别分析及其在人脸识别中的应用 被引量:2
1
作者 傅俊鹏 陈秀宏 葛骁倩 《计算机工程与科学》 CSCD 北大核心 2017年第2期343-350,共8页
对高维数据降维并选取有效特征对分类起着关键作用。针对人脸识别中存在的高维和小样本问题,从特征选取和子空间学习入手,提出了一种L_(2,1)范数正则化的不相关判别分析算法。该算法首先对训练样本矩阵进行奇异值分解;然后通过一系列变... 对高维数据降维并选取有效特征对分类起着关键作用。针对人脸识别中存在的高维和小样本问题,从特征选取和子空间学习入手,提出了一种L_(2,1)范数正则化的不相关判别分析算法。该算法首先对训练样本矩阵进行奇异值分解;然后通过一系列变换,将原非线性的Fisher鉴别准则函数转化为线性模型;最后加入L_(2,1)范数惩罚项进行求解,得到一组最佳鉴别矢量。将训练样本和测试样本投影到该低维子空间中,利用最近欧氏距离分类器进行分类。由于加入了L_(2,1)范数惩罚项,该算法能使特征选取和子空间学习同时进行,有效改善识别性能。在ORL、YaleB及PIE人脸库上的实验结果表明,算法在有效降维的同时能进一步提高鉴别能力。 展开更多
关键词 人脸识别 特征选取 子空间学习 L2 1范数 不相关判别分析 FISHER判别分析
在线阅读 下载PDF
有监督不相关局部Fisher判别分析故障诊断 被引量:7
2
作者 李锋 王家序 +1 位作者 汤宝平 邓成军 《振动工程学报》 EI CSCD 北大核心 2015年第4期657-665,共9页
针对现有流形学习理论用于旋转机械故障诊断存在识别精度不高的问题,提出基于有监督不相关局部Fisher判别分析(Supervised Uncorrelated Local Fisher Discriminant Analysis,SULFDA)的新型故障诊断方法。首先构造全面表征不同故障特征... 针对现有流形学习理论用于旋转机械故障诊断存在识别精度不高的问题,提出基于有监督不相关局部Fisher判别分析(Supervised Uncorrelated Local Fisher Discriminant Analysis,SULFDA)的新型故障诊断方法。首先构造全面表征不同故障特征的时频域特征集,再利用有监督不相关局部Fisher判别分析将高维时频域故障特征集化简为区分度更好的低维特征矢量,并输入到K-近邻分类器中进行故障模式辨识。有监督不相关局部Fisher判别分析在类标签指导下最小化同类流形的离散度并最大化异类流形的离散度来实现类判别,还施加了不相关约束条件使所提取的特征统计不相关,提高了针对旋转机械的故障诊断精度。深沟球轴承故障诊断实验验证了该方法的有效性。 展开更多
关键词 故障诊断 旋转机械 时频域特征集 有监督不相关局部Fisher判别分析 流形学习
在线阅读 下载PDF
基于大间距准则的不相关保局投影分析 被引量:7
3
作者 龚劬 唐萍峰 《自动化学报》 EI CSCD 北大核心 2013年第9期1575-1580,共6页
局部保持投影(Locality preserving projections,LPP)算法只保持了目标在投影后的邻域局部信息,为了更好地刻画数据的流形结构,引入了类内和类间局部散度矩阵,给出了一种基于有效且稳定的大间距准则(Maximum margin criterion,MMC)的不... 局部保持投影(Locality preserving projections,LPP)算法只保持了目标在投影后的邻域局部信息,为了更好地刻画数据的流形结构,引入了类内和类间局部散度矩阵,给出了一种基于有效且稳定的大间距准则(Maximum margin criterion,MMC)的不相关保局投影分析方法,该方法在最大化散度矩阵迹差时,引入尺度因子α,对类内和类间局部散度矩阵进行加权,以便找到更适合分类的子空间并且可避免小样本问题;更重要的是,大间距准则下提取的判别特征集一般情况下是统计相关的,造成了特征信息的冗余,因此,通过增加一个不相关约束条件,利用推导出的公式提取不相关判别特征集,这样做,对正确识别更为有利.在Yale人脸库、PIE人脸库和MNIST手写数字库上的测试结果表明,本文方法有效且稳定,与LPP、LDA(Linear discriminant analysis)和LPMIP(Locality-preserved maximum information projection)方法等相比,具有更高的正确识别率。 展开更多
关键词 特征提取 大间距准则 保局投影 不相关判别分析 人脸识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部