期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Kreǐn空间的两阶段子空间学习
1
作者 薛晖 史娜 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第3期589-594,共6页
为了解决不定核Fisher判别分析(IKFDA)在处理高维小样本数据时的病态问题,基于Kreǐn空间提出了两阶段的IKFDA学习框架TP-IKFDA;为了解决不定核典型相关分析(IKCCA)在处理高维小样本数据时的过拟合问题,提出了两阶段的IKCCA学习框架TP-I... 为了解决不定核Fisher判别分析(IKFDA)在处理高维小样本数据时的病态问题,基于Kreǐn空间提出了两阶段的IKFDA学习框架TP-IKFDA;为了解决不定核典型相关分析(IKCCA)在处理高维小样本数据时的过拟合问题,提出了两阶段的IKCCA学习框架TP-IKCCA.通过不定核主成分分析(IKPCA)进行降维处理,减弱高维特征所带来的负面影响;然后,在降维后的特征空间中进行Fisher判别分析(FDA)或典型相关分析(CCA).真实数据集上的试验结果表明,与IKPCA、IKFDA以及IKFDA的改进算法相比,TP-IKFDA的分类精度明显提高;TP-IKCCA相较于现有的IKCCA模型泛化性能得到了进一步改善.因此,在处理高维小样本数据时,TP-IKFDA和TP-IKCCA的实际泛化性能优于现有的不定核子空间学习技术. 展开更多
关键词 Kreǐn空间 不定 不定Fisher判别分析 不定核典型相关分析 不定主成分分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部