期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Kreǐn空间的两阶段子空间学习
1
作者
薛晖
史娜
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第3期589-594,共6页
为了解决不定核Fisher判别分析(IKFDA)在处理高维小样本数据时的病态问题,基于Kreǐn空间提出了两阶段的IKFDA学习框架TP-IKFDA;为了解决不定核典型相关分析(IKCCA)在处理高维小样本数据时的过拟合问题,提出了两阶段的IKCCA学习框架TP-I...
为了解决不定核Fisher判别分析(IKFDA)在处理高维小样本数据时的病态问题,基于Kreǐn空间提出了两阶段的IKFDA学习框架TP-IKFDA;为了解决不定核典型相关分析(IKCCA)在处理高维小样本数据时的过拟合问题,提出了两阶段的IKCCA学习框架TP-IKCCA.通过不定核主成分分析(IKPCA)进行降维处理,减弱高维特征所带来的负面影响;然后,在降维后的特征空间中进行Fisher判别分析(FDA)或典型相关分析(CCA).真实数据集上的试验结果表明,与IKPCA、IKFDA以及IKFDA的改进算法相比,TP-IKFDA的分类精度明显提高;TP-IKCCA相较于现有的IKCCA模型泛化性能得到了进一步改善.因此,在处理高维小样本数据时,TP-IKFDA和TP-IKCCA的实际泛化性能优于现有的不定核子空间学习技术.
展开更多
关键词
Kreǐn空间
不定
核
不定
核
Fisher判别
分析
不定核典型相关分析
不定
核
主成分
分析
在线阅读
下载PDF
职称材料
题名
基于Kreǐn空间的两阶段子空间学习
1
作者
薛晖
史娜
机构
东南大学计算机科学与工程学院
东南大学计算机网络和信息集成教育部重点实验室
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第3期589-594,共6页
基金
国家重点研发计划资助项目(2017YFB1002801)
国家自然科学基金资助项目(61876091)
文摘
为了解决不定核Fisher判别分析(IKFDA)在处理高维小样本数据时的病态问题,基于Kreǐn空间提出了两阶段的IKFDA学习框架TP-IKFDA;为了解决不定核典型相关分析(IKCCA)在处理高维小样本数据时的过拟合问题,提出了两阶段的IKCCA学习框架TP-IKCCA.通过不定核主成分分析(IKPCA)进行降维处理,减弱高维特征所带来的负面影响;然后,在降维后的特征空间中进行Fisher判别分析(FDA)或典型相关分析(CCA).真实数据集上的试验结果表明,与IKPCA、IKFDA以及IKFDA的改进算法相比,TP-IKFDA的分类精度明显提高;TP-IKCCA相较于现有的IKCCA模型泛化性能得到了进一步改善.因此,在处理高维小样本数据时,TP-IKFDA和TP-IKCCA的实际泛化性能优于现有的不定核子空间学习技术.
关键词
Kreǐn空间
不定
核
不定
核
Fisher判别
分析
不定核典型相关分析
不定
核
主成分
分析
Keywords
Kreǐn spaces
indefinite kernel
indefinite kernel Fisher discriminant analysis
indefinite kernel canonical correlation analysis
indefinite kernel principal component analysis
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Kreǐn空间的两阶段子空间学习
薛晖
史娜
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部