期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
不均衡样本下轴承故障的LSGAN‑Swin Transformer诊断方法
1
作者 刘杰 谭玉涛 +1 位作者 谷艳玲 杨娜 《振动工程学报》 北大核心 2025年第8期1775-1787,共13页
针对轴承在复杂环境下工作时故障数据难以大量获取,正常数据与故障数据比例严重失衡造成的深度模型训练不充分、诊断精度低等问题,提出一种基于LSGAN-Swin Transformer的轴承故障诊断方法,利用最小二乘生成对抗网络(LSGAN)扩充不均衡或... 针对轴承在复杂环境下工作时故障数据难以大量获取,正常数据与故障数据比例严重失衡造成的深度模型训练不充分、诊断精度低等问题,提出一种基于LSGAN-Swin Transformer的轴承故障诊断方法,利用最小二乘生成对抗网络(LSGAN)扩充不均衡或缺少的轴承数据集,引入窗口自注意力网络进行轴承故障状态识别,使用两种数据集验证所提方法的有效性,并分别与SGAN、WGAN进行对比,证明LSGAN生成的数据训练模型具有更高的准确率。在小样本条件下训练LSGAN,将所提Swin Transformer(Swin-T)模型与CNN、AlexNe和SqueezeNet进行对比,诊断准确率分别提升了34.85%、13.45%和12.95%。通过t-SNE可视化分析对模型分类效果进行评估,结果表明,LSGAN-Swin-T模型在训练样本数量较少时仍能较好地满足故障诊断中的需求,为不均衡数据下的轴承故障诊断研究提供思路。 展开更多
关键词 故障诊断 滚动轴承 不均衡样本 最小二乘生成对抗网络 Swin Transformer
在线阅读 下载PDF
基于改进SMOTE不均衡样本处理和IHPO-DBN的变压器故障诊断方法研究 被引量:6
2
作者 周萱 吴伟丽 《电力系统保护与控制》 EI CSCD 北大核心 2024年第11期21-30,共10页
针对由于变压器故障样本不均衡和故障模型陷入局部最优而导致的分类准确率低的问题,提出了基于改进的合成少数类过采样技术和优化深度置信网络(deep belief network, DBN)的变压器故障诊断方法。首先采用聚类融合的K-means算法,通过分... 针对由于变压器故障样本不均衡和故障模型陷入局部最优而导致的分类准确率低的问题,提出了基于改进的合成少数类过采样技术和优化深度置信网络(deep belief network, DBN)的变压器故障诊断方法。首先采用聚类融合的K-means算法,通过分簇和匹配的方式筛选出不稳定的少数类样本用以改进中心点合成少数类过采样技术(center point synthetic minority oversampling technique, CP-SMOTE)算法,并对少数类样本进行扩增,解决了变压器故障数据分布不均衡的问题。其次,通过加入随机逆向学习和自适应惯性权重技术对猎食者优化算法进行改进,并用改进后的算法对DBN的内部参数进行优化调整,提高了模型精度。最后,将不同数据预处理情况下以及不同数据规模下的变压器故障模型进行仿真对比。结果表明,经过数据预处理和模型优化后的变压器故障识别准确率能够提高到98%,有效地解决了故障数据不平衡导致的分类精度低的问题。 展开更多
关键词 变压器故障诊断 不均衡样本 K-MEANS聚类 改进合成少数过采样 改进猎食者优化
在线阅读 下载PDF
基于Bagging-MCNN模型的不均衡样本轴承故障诊断方法 被引量:3
3
作者 张笑璐 邹益胜 +2 位作者 张波 刘永志 蒋雨良 《现代制造工程》 CSCD 北大核心 2022年第1期104-112,共9页
针对轴承不均衡样本情景下故障诊断存在的精度与泛用性不高问题,借鉴集成学习获取强监督模型的方法,结合对不均衡样本进行采样处理的类别重组法,提出一种基于Bagging思路的多通道卷积神经网络(Bagging-MCNN)故障诊断模型。首先将原始数... 针对轴承不均衡样本情景下故障诊断存在的精度与泛用性不高问题,借鉴集成学习获取强监督模型的方法,结合对不均衡样本进行采样处理的类别重组法,提出一种基于Bagging思路的多通道卷积神经网络(Bagging-MCNN)故障诊断模型。首先将原始数据进行标准化处理并划分为训练集与测试集,对训练集进行放回采样构造多个训练子集,同时对测试集进行乱序操作;然后将构造完成的新集合放入多通道卷积神经网络模型进行训练,获得各卷积网络子模型的判别矩阵,融合所有判别矩阵获得最终的诊断结果。在公开轴承数据集上进行试验验证,结合Bagging思路的多通道卷积神经网络故障诊断方法在均衡以及不均衡情景下的诊断精度相较普通卷积神经网络模型,分别提高了1.1%与10.8%,同时提高了模型的收敛速度以及诊断稳定性。 展开更多
关键词 轴承 故障诊断 不均衡样本
在线阅读 下载PDF
一种基于SMOTE的不均衡样本KNN分类方法 被引量:4
4
作者 林泳昌 朱晓姝 《广西科学》 CAS 2020年第3期276-283,共8页
针对在数据样本不均衡时,K近邻(K-nearest Neighbor,KNN)方法的预测结果会偏向样本数占优类的问题,本文提出了一种基于合成少数类过采样方法(SMOTE)的KNN不均衡样本分类优化方法(KSID)。该方法过程为:首先使用SMOTE方法将不均衡的训练... 针对在数据样本不均衡时,K近邻(K-nearest Neighbor,KNN)方法的预测结果会偏向样本数占优类的问题,本文提出了一种基于合成少数类过采样方法(SMOTE)的KNN不均衡样本分类优化方法(KSID)。该方法过程为:首先使用SMOTE方法将不均衡的训练集均衡化,并训练逻辑回归模型;然后使用逻辑回归模型对训练集进行预测,获取预测为正样本的数据,通过使用SMOTE方法均衡化该正样本,并训练KNN模型;最后把测试集放入该结合逻辑回归方法的KNN模型进行预测,得到最终的预测结果。围绕6个不均衡数据集,将KSID与逻辑回归、KNN和支持向量机(SVM)决策树等方法进行对比实验,结果表明,KSID方法在准确率、查全率、查准率、F1值这4个性能指标上均优于其他3种方法。通过引入SMOTE,KSID方法克服了KNN模型遇到样本不均衡数据集时,产生分类偏向的问题,为进一步研究KNN方法的优化和应用提供参考。 展开更多
关键词 不均衡样本 KNN SMOTE KSID 逻辑回归 分类
在线阅读 下载PDF
考虑训练样本分布不均衡的超短期风电功率概率预测 被引量:6
5
作者 李丹 方泽仁 +3 位作者 缪书唯 胡越 梁云嫣 贺帅 《电网技术》 EI CSCD 北大核心 2024年第3期1133-1145,共13页
提出一种考虑训练样本分布不均衡的超短期风电概率预测方法。首先构建深度信念混合密度网络,通过深度信念网络独特的预训练和微调机制提取输入变量的隐特征,利用Beta混合概率分布的有界性准确表征风电预测功率的概率分布,实现隐特征与... 提出一种考虑训练样本分布不均衡的超短期风电概率预测方法。首先构建深度信念混合密度网络,通过深度信念网络独特的预训练和微调机制提取输入变量的隐特征,利用Beta混合概率分布的有界性准确表征风电预测功率的概率分布,实现隐特征与预测功率概率分布参数之间的非线性映射;然后引入训练样本分布平滑策略,其中特征分布平滑技术用于校准输入特征,标签分布平滑技术用于对各样本误差赋予差异化权重,从输入和输出两方面改善训练样本分布不均衡现象对预测结果的不利影响。实际算例结果表明,与常见风电功率概率预测模型相比,所提模型在点预测和概率预测方面均能获得较高的预测精度,尤其能有效提高低密度样本区域的预测精度。 展开更多
关键词 风电功率概率预测 深度信念网络 混合密度网络 训练样本分布不均衡 特征分布平滑 标签分布平滑
在线阅读 下载PDF
滑坡易发性评价中样本不均衡问题处理研究 被引量:4
6
作者 田尤 高波 +4 位作者 殷红 李元灵 张佳佳 陈龙 李洪梁 《水文地质工程地质》 CAS CSCD 北大核心 2024年第6期171-181,共11页
滑坡易发性评价中,样本不均衡问题的不同处理方案通常会带来评价结果的大量不确定性。针对这一问题,以藏东昌都市部分县(区)为研究区,构建滑坡/非滑坡样本不均衡数据集,采用不处理、下采样和合成少数类过采样(synthetic minority oversa... 滑坡易发性评价中,样本不均衡问题的不同处理方案通常会带来评价结果的大量不确定性。针对这一问题,以藏东昌都市部分县(区)为研究区,构建滑坡/非滑坡样本不均衡数据集,采用不处理、下采样和合成少数类过采样(synthetic minority oversampling technique,SMOTE)3种处置方案,运用逻辑回归方法分别构建滑坡易发性评价模型。基于ROC曲线、准确度、精确率、召回率、漏检率等评价指标,采用综合评价指标F_(1)′同数对模型分类的精度进行验证。结果表明:数据处理成均衡数据集(过采样/下采样)建立的模型效果较不处理数据建立的模型效果有了大幅提升,F_(1)′同数的值最大提高了53.17%;在下采样、过采样两种数据处理方案中,过采样方法比下采样方法F_(1)′分数的值提高了16.30%,表明过采样方法对处理样本不均衡数据问题方面具有较好效果。研究成果可为滑坡预测和地质灾害预测前的数据集处理提供参考,为进一步提高区域防灾减灾水平提供理论与技术支持。 展开更多
关键词 滑坡易发性 合成少数类过采样技术 评价模型 昌都市 样本不均衡数据
在线阅读 下载PDF
C-SVM在不同类别样本数目不均衡下的优化 被引量:3
7
作者 张秋余 赵付清 +3 位作者 王静 余冬梅 李建建 张润花 《兰州理工大学学报》 CAS 北大核心 2007年第4期90-92,共3页
在解决故障检测等分类问题时,若不同类别样本数目相差很大,C-SVM训练的分类错误总偏向于样本数较少的类别,因而影响了分类的精确性.为提高精确性,提出一种优化算法,在训练过程中针对不同类样本,采用不同的权值来优化训练过程,按正负类... 在解决故障检测等分类问题时,若不同类别样本数目相差很大,C-SVM训练的分类错误总偏向于样本数较少的类别,因而影响了分类的精确性.为提高精确性,提出一种优化算法,在训练过程中针对不同类样本,采用不同的权值来优化训练过程,按正负类样本在总样本中所占的比例,加大样本数较少的类别权值,降低样本数较大的类别权值来实现两类样本间的均衡.实验结果表明,该方法对两类样本数目相差很大的问题有效. 展开更多
关键词 C-SVM 不均衡样本 参数优化 加权
在线阅读 下载PDF
基于混合特征选择和IBSLO-KELM的变压器故障诊断方法
8
作者 李海龙 杜江 《广东电力》 北大核心 2025年第6期68-78,共11页
为提高变压器油中溶解气体特征质量和模型诊断准确率,提出了一种基于混合特征选择和用改进吸血水蛭优化算法(improved blood-sucking leech optimizer,IBSLO)优化核极限学习机(kernel extreme learning machine,KELM)的变压器故障诊断... 为提高变压器油中溶解气体特征质量和模型诊断准确率,提出了一种基于混合特征选择和用改进吸血水蛭优化算法(improved blood-sucking leech optimizer,IBSLO)优化核极限学习机(kernel extreme learning machine,KELM)的变压器故障诊断方法。首先,通过扩展自然邻域过采样算法对原始的样本数据进行扩充以实现故障样本均衡化;其次,基于相关比值法构建30维候选特征集,再采用混合特征选择方法,通过秩聚合算法融合4种不同特征选择方法产生的排名,形成全局综合特征排名,并采用逐维诊断的方式得到优选特征集;然后,引入佳点集策略、反近似对立学习策略和乘除法策略对吸血水蛭优化算法进行改进,并采用改进后的算法优化KELM的相关参数,以提高KELM的分类能力;最后,对不同特征选择方法以及不同故障诊断模型进行对比实验。实验结果表明,经过样本扩充和特征优选,IBSLO-KELM模型的诊断准确率可达97.8%,相较于随机森林、ReliefF、最大互信息系数、最大相关最小冗余4种单一特征选择算法,准确率分别提升了7.2百分点、5.0百分点、8.9百分点、8.4百分点,这证明了所提方法的有效性。 展开更多
关键词 不均衡样本 混合特征选择 改进吸血水蛭优化 核极限学习机 变压器故障诊断
在线阅读 下载PDF
TopPixelLoss:类别不均衡的遥感影像语义分割损失函数 被引量:2
9
作者 袁伟 许文波 周甜 《中国空间科学技术》 CSCD 北大核心 2021年第6期85-90,共6页
针对遥感影像中类别不均衡的小目标分割效果不理想的问题,提出了一种类别不均衡小目标二分类分割的损失函数——TopPixelLoss损失函数。首先计算出每个像素的交叉熵,然后将所有像素的交叉熵按从大到小进行排序,随后确定一个K值作为阈值... 针对遥感影像中类别不均衡的小目标分割效果不理想的问题,提出了一种类别不均衡小目标二分类分割的损失函数——TopPixelLoss损失函数。首先计算出每个像素的交叉熵,然后将所有像素的交叉熵按从大到小进行排序,随后确定一个K值作为阈值,筛选出前K个交叉熵最大的像素,最后对于筛选出的K个像素交叉熵取平均,做为损失值。在ISPRS提供的Vaihingen数据集上,使用PSPNet网络与普通交叉熵、FocalLoss、TopPixelLoss三种损失函数分别对车辆进行二分类分割试验。结果表明,不同的K值,使用TopPixelLoss损失函数的平均交并比(MIoU)、F1-score、准确度(ACC)都最高;当K值为5×10^(4)时效果最佳,MIoU、F1-score、ACC分别比FocalLoss提高了3.0%、5.0%、0.1%。TopPixelLoss损失函数是一种针对类别不均衡分割非常有效的损失函数。 展开更多
关键词 遥感影像 语义分割 深度学习 类别不均衡 小目标分割 不均衡样本
在线阅读 下载PDF
基于门控循环单元网络的低阻油层测井流体识别方法 被引量:2
10
作者 龚宇 刘迪仁 《科学技术与工程》 北大核心 2024年第12期4932-4941,共10页
研究区块低阻油层发育广泛,油层和水层的电阻率相差不大,导致测井流体识别较为困难。为了有效识别低阻油层,采用少数类过采样技术(synthetic minority oversampling technique,Smote)对油水同层,油层等少数类样本进行过采样使数据集均衡... 研究区块低阻油层发育广泛,油层和水层的电阻率相差不大,导致测井流体识别较为困难。为了有效识别低阻油层,采用少数类过采样技术(synthetic minority oversampling technique,Smote)对油水同层,油层等少数类样本进行过采样使数据集均衡;并利用门控循环单元(gated recurrent unit,GRU)网络模型进行低阻油层的流体识别。通过相关性分析确定自然伽马(GR)、深侧向电阻率(RD)、密度(DEN)等8条测井曲线数据作为输入训练模型,应用于中实际资料中,并将GRU与传统RNN和其他3种机器学习算法对比。结果表明:序列数据模型的流体识别效果比传统机器学习模型好,且基于Smote-GRU的流体识别模型的符合率达到89.5%,相对传统循环神经网络(recurrent neural network,RNN)的81.1%,取得了较好的应用效果。通过对照试验还证实了Smote算法提高了分类器对少数类样本的识别率。所提出的方法可为样本不均衡的低阻油层的流体识别提供参考。 展开更多
关键词 低阻油层 流体识别 不均衡样本 门控循环单元(GRU)
在线阅读 下载PDF
基于改进LightGBM混合集成模型的变压器故障识别方法
11
作者 荆澜涛 张野 +3 位作者 张彬 姚晔 许东 王亮 《高电压技术》 CSCD 北大核心 2024年第12期5289-5300,I0002,共13页
针对变压器故障识别方法在处理不均衡故障数据时存在较大偏差的问题,构建了一种基于改进轻量级梯度提升机的混合集成模型,用以变压器故障识别。首先,提出一种结合梯度调和损失函数和交叉熵损失函数的改进轻量级梯度提升机(gradient harm... 针对变压器故障识别方法在处理不均衡故障数据时存在较大偏差的问题,构建了一种基于改进轻量级梯度提升机的混合集成模型,用以变压器故障识别。首先,提出一种结合梯度调和损失函数和交叉熵损失函数的改进轻量级梯度提升机(gradient harmonizing mechanism loss and cross entropy loss improved light gradient boosting machine,GCLightGBM),提升模型对数据集中少数样本的关注度。然后,针对GCLightGBM中参数特异性取值影响模型识别能力的问题,提出一种基于GCLightGBM的混合集成模型,进一步提高其准确率的同时,确保模型对现实多变不均衡数据集依然保持良好的准确率。实验结果表明,GCLightGBM可有效解决少数类样本准确率低的问题,整体准确率高达0.911。且针对其他多变不均衡数据集,基于GCLightGBM混合集成模型故障识别方法平均准确率高达0.988。 展开更多
关键词 变压器 不均衡样本 故障识别 梯度调和损失函数 Stacking集成框架
在线阅读 下载PDF
基于1-分类支持向量机的机器视觉缺陷分类方法 被引量:4
12
作者 李琪 卢荣胜 陈成 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第10期1311-1315,共5页
文章针对机器视觉表面缺陷检测中不同类缺陷样本数量少和不均衡的情况,提出了用1-分类分别对单独类缺陷进行真/假分类判断的分类方法,首先对每类训练样本计算具有尺度和旋转不变的不变矩特征,再使用基于1-分类的支持向量机和RBF核函数... 文章针对机器视觉表面缺陷检测中不同类缺陷样本数量少和不均衡的情况,提出了用1-分类分别对单独类缺陷进行真/假分类判断的分类方法,首先对每类训练样本计算具有尺度和旋转不变的不变矩特征,再使用基于1-分类的支持向量机和RBF核函数对每一类缺陷样本生成一个超球面,然后通过二重网格搜索的方法对核函数的参数寻优,最后对实际采集的缺陷图像自动寻找缺陷位置并进行分类。实验表明,1-分类支持向量机进行缺陷分类能克服分类样本不均衡的限制,具有分类准确率高及易实现在线检测等优点。 展开更多
关键词 缺陷检测 不均衡样本 1-分类SVM RBF核函数 二重网格
在线阅读 下载PDF
新的短文本特征权重计算方法 被引量:8
13
作者 马雯雯 邓一贵 《计算机应用》 CSCD 北大核心 2013年第8期2280-2282,2292,共4页
短文本固有的特征稀疏和样本高度不均衡等特点,使得传统长文本的加权方法难以直接套用。针对此问题,提出一种针对短文本的特征权重计算方法——综合类别法。该方法引入反文档频和相关性频率的概念,综合考虑了样本在正类和负类中的分布... 短文本固有的特征稀疏和样本高度不均衡等特点,使得传统长文本的加权方法难以直接套用。针对此问题,提出一种针对短文本的特征权重计算方法——综合类别法。该方法引入反文档频和相关性频率的概念,综合考虑了样本在正类和负类中的分布情况。实验结果表明,相对于其他特征权重方法,该方法的微平均和宏平均值均在90%以上,能增强样本在负类中的类别区分能力,改善短文本分类的查准率和查全率。 展开更多
关键词 短文本 特征权重 不均衡样本 文本分类
在线阅读 下载PDF
用于电力系统暂态稳定预测的支持向量机组合分类器及其可信度评价 被引量:30
14
作者 周艳真 吴俊勇 +2 位作者 于之虹 冀鲁豫 郝亮亮 《电网技术》 EI CSCD 北大核心 2017年第4期1188-1196,共9页
目前,利用数据挖掘方法进行电力系统暂态稳定分析的研究,所用数据集普遍存在失稳样本少的样本不均衡问题,且挖掘模型的参数选择困难,缺乏对预测结果可信度进行评价。针对以上问题,文章提出用于暂稳预测的支持向量机(support vector mach... 目前,利用数据挖掘方法进行电力系统暂态稳定分析的研究,所用数据集普遍存在失稳样本少的样本不均衡问题,且挖掘模型的参数选择困难,缺乏对预测结果可信度进行评价。针对以上问题,文章提出用于暂稳预测的支持向量机(support vector machine,SVM)组合分类器及其可信度评价方法。首先采用改进bootstrap抽样得到多个类别均衡的数据集,利用随机特征子空间技术进一步压缩数据集;然后用压缩后的数据训练得到多个SVM分类器,各SVM的参数在经验范围内随机选取;最后,通过综合多个SVM的概率输出,得到组合分类器的预测结果,并对结果可信度进行评价。通过算例分析表明,改进Bootstrap算法能够明显减少对失稳样本的漏判,所提出的SVM组合分类器具有较高的预测准确度和可信度。 展开更多
关键词 暂态稳定预测 支持向量机 改进Bootstrap抽样 组合分类器 不均衡样本 可信度评价
在线阅读 下载PDF
基于改进的加权补集朴素贝叶斯物流新闻分类 被引量:11
15
作者 许英姿 任俊玲 《计算机工程与设计》 北大核心 2022年第1期179-185,共7页
针对物流新闻类别分布不均衡,分类器容易倾向大类别而忽略小类别的问题,提出基于加权补集的朴素贝叶斯分类模型。构建物流新闻语料库,结合卡方检验进行特征选择,基于局部、全局和类内、类间的思想,分析并改进传统特征加权算法,设计适用... 针对物流新闻类别分布不均衡,分类器容易倾向大类别而忽略小类别的问题,提出基于加权补集的朴素贝叶斯分类模型。构建物流新闻语料库,结合卡方检验进行特征选择,基于局部、全局和类内、类间的思想,分析并改进传统特征加权算法,设计适用于类别分布不均衡物流新闻的加权补集朴素贝叶斯模型。实验结果表明,相较传统分类方法,加权补集朴素贝叶斯模型能有效解决物流新闻文本不均衡情况下的分类问题,快速准确地对物流新闻进行分类。 展开更多
关键词 朴素贝叶斯 不均衡样本 补集 物流新闻 文本分类 特征加权
在线阅读 下载PDF
一种基于改进CRNN的轻量化乐谱识别方法 被引量:3
16
作者 蒋凌云 鞠金恒 +1 位作者 徐佳 肖甫 《电子学报》 EI CAS CSCD 北大核心 2023年第11期3167-3175,共9页
基于深度学习的乐谱识别方法提高了识别精度,但存在模型训练单次迭代耗时长、总迭代轮数多的问题.本文提出了一种改进卷积循环神经网络的轻量化乐谱识别方法CRNN-lite(lightweight Convolutional Recurrent Neural Networks),该方法在... 基于深度学习的乐谱识别方法提高了识别精度,但存在模型训练单次迭代耗时长、总迭代轮数多的问题.本文提出了一种改进卷积循环神经网络的轻量化乐谱识别方法CRNN-lite(lightweight Convolutional Recurrent Neural Networks),该方法在卷积层引入残差式深度可分离卷积,减少计算量并加速特征图的提取;在循环层使用双向简单循环单元,采用并行计算避免了串行计算的强依赖问题;在转录层调节交叉熵函数参数,针对性地学习不均衡样本数据.实验结果表明,该方法提高训练速度,单次迭代耗时为基准网络的43%,在失真图像数据上符号错误率为1.12%,序列错误率为14.5%,错误率指标均优于对比方案. 展开更多
关键词 光学乐谱识别 序列识别 卷积循环神经网络 深度可分离卷积 简单循环单元 不均衡样本学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部